HEAL DSpace

Fuzzy rule based neuro-dynamic programming for mobile robot skill acquisition on the basis of a nested multi-agent architecture

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karigiannis, JN en
dc.contributor.author Rekatsinas, TI en
dc.contributor.author Tzafestas, CS en
dc.date.accessioned 2014-03-01T02:46:48Z
dc.date.available 2014-03-01T02:46:48Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32864
dc.subject Developmental robotics en
dc.subject Multi-agent architectures en
dc.subject Neuro-dynamic learning en
dc.subject.other A-plane en
dc.subject.other Biologically inspired en
dc.subject.other Biologically-inspired robots en
dc.subject.other Box-pushing en
dc.subject.other Collaborative control en
dc.subject.other Continuous spaces en
dc.subject.other Control framework en
dc.subject.other Developmental robotics en
dc.subject.other Distributed agents en
dc.subject.other Dynamic learning en
dc.subject.other Effective learning en
dc.subject.other Experimental studies en
dc.subject.other Function approximators en
dc.subject.other Fuzzy rule based en
dc.subject.other Independent agents en
dc.subject.other Intelligent behavior en
dc.subject.other Intrinsic behavior en
dc.subject.other Living organisms en
dc.subject.other Multi-agent approach en
dc.subject.other Multi-agent architectures en
dc.subject.other Multiagent architecture en
dc.subject.other Neuro dynamic programming en
dc.subject.other Neuro-dynamic learning en
dc.subject.other No-contact en
dc.subject.other Organizational structures en
dc.subject.other Research communities en
dc.subject.other Robotic systems en
dc.subject.other Self-organizations en
dc.subject.other Skill acquisition en
dc.subject.other Skill learning process en
dc.subject.other Skill transfer en
dc.subject.other Specific problems en
dc.subject.other State-space en
dc.subject.other Task models en
dc.subject.other Theoretical framework en
dc.subject.other Architecture en
dc.subject.other Biology en
dc.subject.other Biomimetics en
dc.subject.other Computation theory en
dc.subject.other Dynamic programming en
dc.subject.other Hierarchical systems en
dc.subject.other Intelligent robots en
dc.subject.other Machine design en
dc.subject.other Mobile agents en
dc.subject.other Mobile robots en
dc.subject.other Multi agent systems en
dc.subject.other Robot programming en
dc.subject.other Robotics en
dc.subject.other Intelligent agents en
dc.title Fuzzy rule based neuro-dynamic programming for mobile robot skill acquisition on the basis of a nested multi-agent architecture en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ROBIO.2010.5723346 en
heal.identifier.secondary http://dx.doi.org/10.1109/ROBIO.2010.5723346 en
heal.identifier.secondary 5723346 en
heal.publicationDate 2010 en
heal.abstract Biologically inspired architectures that mimic the organizational structure of living organisms and in general frameworks that will improve the design of intelligent robots attract significant attention from the research community. Self-organization problems, intrinsic behaviors as well as effective learning and skill transfer processes in the context of robotic systems have been significantly investigated by researchers. Our work presents a new framework of developmental skill learning process by introducing a hierarchical nested multi-agent architecture. A neuro-dynamic learning mechanism employing function approximators in a fuzzified state-space is utilized, leading to a collaborative control scheme among the distributed agents engaged in a continuous space, which enables the multi-agent system to learn, over a period of time, how to perform sequences of continuous actions in a cooperative manner without any prior task model. The agents comprising the system manage to gain experience over the task that they collaboratively perform by continuously exploring and exploiting their state-to-action mapping space. For the specific problem setting, the proposed theoretical framework is employed in the case of two simulated e-Puck robots performing a collaborative box-pushing task. This task involves active cooperation between the robots in order to jointly push an object on a plane to a specified goal location. We should note that 1) there are no contact points specified for the two e-Pucks and 2) the shape of the object is indifferent. The actuated wheels of the mobile robots are considered as the independent agents that have to build up cooperative skills over time, in order for the robot to demonstrate intelligent behavior. Our goal in this experimental study is to evaluate both the proposed hierarchical multi-agent architecture, as well as the methodological control framework. Such a hierarchical multi-agent approach is envisioned to be highly scalable for the control of complex biologically inspired robot locomotion systems. © 2010 IEEE. en
heal.journalName 2010 IEEE International Conference on Robotics and Biomimetics, ROBIO 2010 en
dc.identifier.doi 10.1109/ROBIO.2010.5723346 en
dc.identifier.spage 312 en
dc.identifier.epage 319 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής