HEAL DSpace

Genetic algorithm solution to optimal sizing problem of small autonomous hybrid power systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsigiannis, YA en
dc.contributor.author Georgilakis, PS en
dc.contributor.author Karapidakis, ES en
dc.date.accessioned 2014-03-01T02:46:48Z
dc.date.available 2014-03-01T02:46:48Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32866
dc.subject Combinatorial optimization en
dc.subject Genetic algorithms en
dc.subject Metaheuristics en
dc.subject Renewable energy sources en
dc.subject Small autonomous hybrid power systems en
dc.subject.other Algorithm solution en
dc.subject.other Binary genetic algorithm en
dc.subject.other Computational time en
dc.subject.other Exhaustive enumeration en
dc.subject.other Hybrid power systems en
dc.subject.other Key parameters en
dc.subject.other Meta heuristics en
dc.subject.other Natural selection en
dc.subject.other Optimal sizing en
dc.subject.other Optimization metaheuristic en
dc.subject.other Renewable energy source en
dc.subject.other Solution quality en
dc.subject.other Solution space en
dc.subject.other Artificial intelligence en
dc.subject.other Combinatorial optimization en
dc.subject.other Genetic algorithms en
dc.subject.other Heuristic algorithms en
dc.subject.other Renewable energy resources en
dc.subject.other Biology en
dc.title Genetic algorithm solution to optimal sizing problem of small autonomous hybrid power systems en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-12842-4_38 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-12842-4_38 en
heal.publicationDate 2010 en
heal.abstract The optimal sizing of a small autonomous hybrid power system can be a very challenging task, due to the large number of design settings and the uncertainty in key parameters. This problem belongs to the category of combinatorial optimization, and its solution based on the traditional method of exhaustive enumeration can be proved extremely time-consuming. This paper proposes a binary genetic algorithm in order to solve the optimal sizing problem. Genetic algorithms are popular optimization metaheuristic techniques based on the principles of genetics and natural selection and evolution, and can be applied to discrete or continuous solution space problems. The obtained results prove the performance of the proposed methodology in terms of solution quality and computational time. © Springer-Verlag Berlin Heidelberg 2010. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-12842-4_38 en
dc.identifier.volume 6040 LNAI en
dc.identifier.spage 327 en
dc.identifier.epage 332 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής