dc.contributor.author |
Katsigiannis, YA |
en |
dc.contributor.author |
Georgilakis, PS |
en |
dc.contributor.author |
Karapidakis, ES |
en |
dc.date.accessioned |
2014-03-01T02:46:48Z |
|
dc.date.available |
2014-03-01T02:46:48Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32866 |
|
dc.subject |
Combinatorial optimization |
en |
dc.subject |
Genetic algorithms |
en |
dc.subject |
Metaheuristics |
en |
dc.subject |
Renewable energy sources |
en |
dc.subject |
Small autonomous hybrid power systems |
en |
dc.subject.other |
Algorithm solution |
en |
dc.subject.other |
Binary genetic algorithm |
en |
dc.subject.other |
Computational time |
en |
dc.subject.other |
Exhaustive enumeration |
en |
dc.subject.other |
Hybrid power systems |
en |
dc.subject.other |
Key parameters |
en |
dc.subject.other |
Meta heuristics |
en |
dc.subject.other |
Natural selection |
en |
dc.subject.other |
Optimal sizing |
en |
dc.subject.other |
Optimization metaheuristic |
en |
dc.subject.other |
Renewable energy source |
en |
dc.subject.other |
Solution quality |
en |
dc.subject.other |
Solution space |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Combinatorial optimization |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Heuristic algorithms |
en |
dc.subject.other |
Renewable energy resources |
en |
dc.subject.other |
Biology |
en |
dc.title |
Genetic algorithm solution to optimal sizing problem of small autonomous hybrid power systems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-12842-4_38 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-12842-4_38 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The optimal sizing of a small autonomous hybrid power system can be a very challenging task, due to the large number of design settings and the uncertainty in key parameters. This problem belongs to the category of combinatorial optimization, and its solution based on the traditional method of exhaustive enumeration can be proved extremely time-consuming. This paper proposes a binary genetic algorithm in order to solve the optimal sizing problem. Genetic algorithms are popular optimization metaheuristic techniques based on the principles of genetics and natural selection and evolution, and can be applied to discrete or continuous solution space problems. The obtained results prove the performance of the proposed methodology in terms of solution quality and computational time. © Springer-Verlag Berlin Heidelberg 2010. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-12842-4_38 |
en |
dc.identifier.volume |
6040 LNAI |
en |
dc.identifier.spage |
327 |
en |
dc.identifier.epage |
332 |
en |