HEAL DSpace

Handwriting automatic classification: Application to ancient Greek inscriptions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papaodysseus, C en
dc.contributor.author Rousopoulos, P en
dc.contributor.author Arabadjis, D en
dc.contributor.author Panopoulou, F en
dc.contributor.author Panagopoulos, M en
dc.date.accessioned 2014-03-01T02:46:49Z
dc.date.available 2014-03-01T02:46:49Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32872
dc.subject Ancient Greek inscription classification en
dc.subject Archaeology en
dc.subject Feature modeling en
dc.subject Handwriting analysis en
dc.subject Handwriting classification en
dc.subject Pattern recognition en
dc.subject Writer identification en
dc.subject.other Ancient Greeks en
dc.subject.other Archaeology en
dc.subject.other Feature modeling en
dc.subject.other Handwriting analysis en
dc.subject.other Handwriting classification en
dc.subject.other Writer identification en
dc.subject.other Feature extraction en
dc.subject.other History en
dc.subject.other Intelligent systems en
dc.subject.other Maximum likelihood en
dc.subject.other Statistical tests en
dc.subject.other Character recognition en
dc.title Handwriting automatic classification: Application to ancient Greek inscriptions en
heal.type conferenceItem en
heal.identifier.primary 10.1109/AIS.2010.5547045 en
heal.identifier.secondary 5547045 en
heal.identifier.secondary http://dx.doi.org/10.1109/AIS.2010.5547045 en
heal.publicationDate 2010 en
heal.abstract In this paper a new approach is presented for automatic writer identification. The approach is applied to the identification of the writer of ancient Greek inscriptions that in turn may offer precise and objective dating of the inscriptions content. Such a dating is crucial for the correct history writing. The methodology is based on the idea of creating an ideal representative of each alphabet symbol in each inscription, via proper fitting of all realizations of the specific symbol in this inscription. Next, geometric features for the ideal representative for each alphabet symbol are defined and extracted and corresponding statistical processing follows based on the computation of the mean value and variance of these characteristics. The decision for writer identification is made via pair-wise, feature based comparisons of the ideal representatives of the inscriptions. Each comparison is implemented by means of multiple statistical tests and an introduced maximum likelihood approach. The system was applied to 33 Athenian inscriptions of classical era which were correctly attributed to 8 different hands, namely with 100% success rate. © 2010 IEEE. en
heal.journalName IEEE 2010 International Conference on Autonomous and Intelligent Systems, AIS 2010 en
dc.identifier.doi 10.1109/AIS.2010.5547045 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής