dc.contributor.author |
Karagiannis, A |
en |
dc.contributor.author |
Constantinou, P |
en |
dc.date.accessioned |
2014-03-01T02:46:51Z |
|
dc.date.available |
2014-03-01T02:46:51Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32891 |
|
dc.subject |
Algorithm modeling |
en |
dc.subject |
Biomedical engineering |
en |
dc.subject |
Computation time |
en |
dc.subject |
Electrocardiogram |
en |
dc.subject |
Empirical Mode Decomposition |
en |
dc.subject.other |
Accurate timing |
en |
dc.subject.other |
Biomedical fields |
en |
dc.subject.other |
Computation time |
en |
dc.subject.other |
Data stream |
en |
dc.subject.other |
Efficient computation |
en |
dc.subject.other |
Electrocardiogram |
en |
dc.subject.other |
Electrocardiogram signal |
en |
dc.subject.other |
Embedded computing |
en |
dc.subject.other |
Empirical Mode Decomposition |
en |
dc.subject.other |
Higher frequencies |
en |
dc.subject.other |
Hilbert Huang transforms |
en |
dc.subject.other |
Hilbert transform |
en |
dc.subject.other |
Incremental algorithm |
en |
dc.subject.other |
Integral transform technique |
en |
dc.subject.other |
Nonstationary signals |
en |
dc.subject.other |
Resource management |
en |
dc.subject.other |
Signal processing chips |
en |
dc.subject.other |
Time series characteristic |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Biomedical engineering |
en |
dc.subject.other |
Biophysics |
en |
dc.subject.other |
Electrocardiography |
en |
dc.subject.other |
Electrochromic devices |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Computational efficiency |
en |
dc.title |
Investigating performance of empirical mode decomposition application on electrocardiogam |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CIBEC.2010.5716048 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CIBEC.2010.5716048 |
en |
heal.identifier.secondary |
5716048 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Empirical Mode Decomposition (EMD) is widely used in biomedical field especially for electrocardiogram (ECG) signal processing. The combination of EMD with Hilbert Transform, the Hilbert Huang Transform (HHT), offers higher frequency resolution and more accurate timing of transient non-stationary signals than conventional integral transform techniques. Embedded computing and signal processing chips with sufficient performance are involved in the application of HHT in data streams. The original HHT algorithm, especially in the case of EMD, is not suitable in such systems so an incremental algorithm is necessary for efficient computation. In this paper an investigation of the EMD performance is presented in terms of computation time that is necessary for smart resource management. A metric is proposed aiming at the a priori calculation of computation time based on ECG time series characteristics. © 2010 IEEE. |
en |
heal.journalName |
2010 5th Cairo International Biomedical Engineering Conference, CIBEC 2010 |
en |
dc.identifier.doi |
10.1109/CIBEC.2010.5716048 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
4 |
en |