dc.contributor.author |
Gastounioti, A |
en |
dc.contributor.author |
Golemati, S |
en |
dc.contributor.author |
Stoitsis, J |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T02:46:52Z |
|
dc.date.available |
2014-03-01T02:46:52Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32896 |
|
dc.subject |
Adaptive block matching |
en |
dc.subject |
Arterial wall |
en |
dc.subject |
Kalman filter |
en |
dc.subject |
Motion analysis |
en |
dc.subject |
Ultrasound |
en |
dc.subject.other |
Adaptive block matching |
en |
dc.subject.other |
Arterial biomechanics |
en |
dc.subject.other |
Arterial wall |
en |
dc.subject.other |
Block Matching |
en |
dc.subject.other |
Carotid artery |
en |
dc.subject.other |
Conventional algorithms |
en |
dc.subject.other |
Conventional methods |
en |
dc.subject.other |
Kalman-filtering |
en |
dc.subject.other |
Motion analysis |
en |
dc.subject.other |
Reference block |
en |
dc.subject.other |
Synthetic images |
en |
dc.subject.other |
Ultrasound |
en |
dc.subject.other |
Ultrasound image sequences |
en |
dc.subject.other |
Biomechanics |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
Kalman filters |
en |
dc.subject.other |
Motion compensation |
en |
dc.subject.other |
Ultrasonics |
en |
dc.subject.other |
Motion estimation |
en |
dc.title |
Kalman-filter-based block matching for arterial wall motion estimation from B-mode ultrasound |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IST.2010.5548454 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IST.2010.5548454 |
en |
heal.identifier.secondary |
5548454 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The motion of the carotid artery wall has been previously estimated from ultrasound image sequences using block matching. In this paper, this conventional method was extended through its combination with Kalman filtering in two distinct scenarios; (a) by renewing the reference block and (b) by updating the estimate of the conventional algorithm. Both procedures were evaluated on synthetic image sequences through the estimation of the warping index. The results showed that incorporation of the Kalman filter in conventional block matching slightly improved the accuracy in arterial wall motion estimation. Updating the estimate of the conventional algorithm using Kalman filtering was the most efficient procedure and could be used to study further the displacements of the arterial wall in an attempt to obtain useful knowledge about arterial biomechanics. © 2010 IEEE. |
en |
heal.journalName |
2010 IEEE International Conference on Imaging Systems and Techniques, IST 2010 - Proceedings |
en |
dc.identifier.doi |
10.1109/IST.2010.5548454 |
en |
dc.identifier.spage |
234 |
en |
dc.identifier.epage |
239 |
en |