HEAL DSpace

Log filtering and interpretation for root cause analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zawawy, H en
dc.contributor.author Kontogiannis, K en
dc.contributor.author Mylopoulos, J en
dc.date.accessioned 2014-03-01T02:46:52Z
dc.date.available 2014-03-01T02:46:52Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32898
dc.subject Goal model en
dc.subject Latent semantic indexing en
dc.subject Log analysis en
dc.subject Performance en
dc.subject Root cause analysis en
dc.subject.other Goal models en
dc.subject.other Latent Semantic Indexing en
dc.subject.other Log analysis en
dc.subject.other Performance en
dc.subject.other Root cause analysis en
dc.subject.other Automation en
dc.subject.other Computer software maintenance en
dc.subject.other Indexing (of information) en
dc.subject.other Mathematical operators en
dc.subject.other Metadata en
dc.subject.other Problem solving en
dc.subject.other Query languages en
dc.subject.other Semantics en
dc.subject.other Trees (mathematics) en
dc.title Log filtering and interpretation for root cause analysis en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICSM.2010.5609556 en
heal.identifier.secondary 5609556 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICSM.2010.5609556 en
heal.publicationDate 2010 en
heal.abstract Problem diagnosis in large software systems is a challenging and complex task. The sheer complexity and size of the logged data make it often difficult for human operators and administrators to perform problem diagnosis and root cause analysis. A challenge in this area is to provide the necessary means, tools, and techniques for the operators to focus their attention to specific parts of the logged data reducing thus the complexity of the diagnostic process. In this paper, we propose a framework for filtering logs according to specific analysis goals and diagnostic hypotheses set by the user or by an automated process. More specifically, the proposed framework uses annotated goal trees to model the constraints and the conditions by which the functionality of a particular system is being delivered. Next, a transformation process maps such constraints and conditions to a collection of queries that can be either applied to a relational database that stores the logged data or use Latent Semantic Indexing to identify the most relevant log entries for the given query. The results of such queries provide a subset of the logged data that is compliant with the goal tree and can be used by a diagnostic SAT-solver based algorithm. Experimental results show that the filtering process can reduce the time and complexity of the diagnosis when applied to multitier heterogeneous service oriented systems. © 2010 IEEE. en
heal.journalName IEEE International Conference on Software Maintenance, ICSM en
dc.identifier.doi 10.1109/ICSM.2010.5609556 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής