Modeling freeway travel speed across lanes: A vector autoregressive approach

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Kopelias, P en
dc.date.accessioned 2014-03-01T02:46:52Z
dc.date.available 2014-03-01T02:46:52Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32908
dc.subject Arima Model en
dc.subject System of Equations en
dc.subject Time Series en
dc.subject vector autoregression en
dc.subject.other ARIMA models en
dc.subject.other Auto-regressive en
dc.subject.other Bayesian en
dc.subject.other Commonly used en
dc.subject.other Exogenous variables en
dc.subject.other Methodological frameworks en
dc.subject.other Precipitation level en
dc.subject.other System of equations en
dc.subject.other Traffic mix en
dc.subject.other Travel speed en
dc.subject.other Automobiles en
dc.subject.other Intelligent systems en
dc.subject.other Time series en
dc.subject.other Traffic control en
dc.subject.other Speed en
dc.title Modeling freeway travel speed across lanes: A vector autoregressive approach en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ITSC.2010.5625059 en
heal.identifier.secondary http://dx.doi.org/10.1109/ITSC.2010.5625059 en
heal.identifier.secondary 5625059 en
heal.publicationDate 2010 en
heal.abstract Time series of travel speed on multilane freeways are considered complex and irregular particularly when addressing the variability across lanes. Literature shows evidence of interactions between speed variability and traffic mix and inclement weather, without extending these results to addressing speed predictability across lanes. We propose the development of a Bayesian system of equations in order to concurrently treat time series collected from each lane in an autoregressive methodological framework. Exogenous variables such as volume, percentage of trucks per lane, as well as precipitation levels are integrated into the model. The proposed approach improves on the predictability of travel speeds across lanes over the commonly used ARIMA models. ©2010 IEEE. en
heal.journalName IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC en
dc.identifier.doi 10.1109/ITSC.2010.5625059 en
dc.identifier.spage 569 en
dc.identifier.epage 574 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record