HEAL DSpace

Model-level data-driven sub-units for signs in videos of continuous sign language

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theodorakis, S en
dc.contributor.author Pitsikalis, V en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T02:46:53Z
dc.date.available 2014-03-01T02:46:53Z
dc.date.issued 2010 en
dc.identifier.issn 15206149 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32910
dc.subject HMM en
dc.subject Sign language en
dc.subject Subunit modeling en
dc.subject.other American sign language en
dc.subject.other Boston University en
dc.subject.other Data-driven en
dc.subject.other Hand positions en
dc.subject.other Hier-archical clustering en
dc.subject.other HMM en
dc.subject.other Phonetic information en
dc.subject.other Qualitative analysis en
dc.subject.other Region-based en
dc.subject.other Sign language en
dc.subject.other Sub-units en
dc.subject.other Subunit modeling en
dc.subject.other Time segmentation en
dc.subject.other Unit constructions en
dc.subject.other Visual feature en
dc.subject.other Visual-processing en
dc.subject.other Hidden Markov models en
dc.subject.other Linguistics en
dc.subject.other Quality control en
dc.subject.other Signal processing en
dc.subject.other Cluster analysis en
dc.title Model-level data-driven sub-units for signs in videos of continuous sign language en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICASSP.2010.5495875 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICASSP.2010.5495875 en
heal.identifier.secondary 5495875 en
heal.publicationDate 2010 en
heal.abstract We investigate the issue of sign language automatic phonetic sub-unit modeling, that is completely data driven and without any prior phonetic information. A first step of visual processing leads to simple and effective region-based visual features. Prior to the sub-unit modeling we propose to employ a pronunciation clustering step with respect to each sign. Afterwards, for each sign and pronunciation group we find the time segmentation at the hidden Markov model (HMM) level. The models employed refer to movements as a sequence of dominant hand positions. The constructed segments are exploited explicitly at the model level via hierarchical clustering of HMMs and lead to the data-driven movement sub-unit construction. The constructed movement sub-units are evaluated in qualitative analysis experiments on data from the Boston University (BU)-400 American Sign Language corpus showing promising results. ©2010 IEEE. en
heal.journalName ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings en
dc.identifier.doi 10.1109/ICASSP.2010.5495875 en
dc.identifier.spage 2262 en
dc.identifier.epage 2265 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής