dc.contributor.author |
Patroumpas, K |
en |
dc.contributor.author |
Sellis, T |
en |
dc.date.accessioned |
2014-03-01T02:46:53Z |
|
dc.date.available |
2014-03-01T02:46:53Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32913 |
|
dc.subject |
Continuous Query |
en |
dc.subject |
Data Stream |
en |
dc.subject |
Data Structure |
en |
dc.subject |
Empirical Validation |
en |
dc.subject |
Sliding Window |
en |
dc.subject |
Stream Processing |
en |
dc.subject |
Near Real Time |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Data stream |
en |
dc.subject.other |
Granular levels |
en |
dc.subject.other |
Multi-level |
en |
dc.subject.other |
Real-time response |
en |
dc.subject.other |
Sliding Window |
en |
dc.subject.other |
Stream processing |
en |
dc.subject.other |
Streaming data |
en |
dc.subject.other |
Time horizons |
en |
dc.subject.other |
Data structures |
en |
dc.subject.other |
Hydraulics |
en |
dc.title |
Multi-granular time-based sliding windows over data streams |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/TIME.2010.14 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TIME.2010.14 |
en |
heal.identifier.secondary |
5601876 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We introduce a multi-level window operator that concurrently spans temporal extents of increasing granularity over a streaming dataset. This windowing construct is inherently sliding with time, essentially providing at each granularity a varying, but always finite portion of the most recent stream items. After a careful algebraic formulation of its semantics, we investigate interesting properties and suggest a suitable data structure that can efficiently maintain tuples qualifying for each granular level. Moreover, we propose techniques for evaluating advanced continuous requests against multiple time horizons, achieving near real-time response at reduced overhead. Finally, this framework is empirically validated against streaming data, offering concrete evidence of its benefits to online stream processing. © 2010 IEEE. |
en |
heal.journalName |
Proceedings - 17th International Symposium on Temporal Representation and Reasoning, TIME 2010 |
en |
dc.identifier.doi |
10.1109/TIME.2010.14 |
en |
dc.identifier.spage |
146 |
en |
dc.identifier.epage |
153 |
en |