HEAL DSpace

Multiscale geometric texture analysis of ultrasound images of carotid atherosclerosis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsiaparas, N en
dc.contributor.author Golemati, S en
dc.contributor.author Andreadis, I en
dc.contributor.author Stoitsis, J en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:46:53Z
dc.date.available 2014-03-01T02:46:53Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32916
dc.subject Carotid Artery en
dc.subject Classification Accuracy en
dc.subject Feature Selection en
dc.subject Standard Deviation en
dc.subject Support Vector Machine en
dc.subject Texture Analysis en
dc.subject Texture Features en
dc.subject Ultrasound en
dc.subject Ultrasound Imaging en
dc.subject.other Atherosclerotic plaque en
dc.subject.other Carotid artery en
dc.subject.other Classification accuracy en
dc.subject.other Classification performance en
dc.subject.other Curvelet transforms en
dc.subject.other Curvelets en
dc.subject.other Decomposition scheme en
dc.subject.other Feature selection en
dc.subject.other Geometric texture en
dc.subject.other Multiscales en
dc.subject.other Ridgelets en
dc.subject.other Sample population en
dc.subject.other Standard deviation en
dc.subject.other Subimages en
dc.subject.other Texture features en
dc.subject.other Ultrasound images en
dc.subject.other Discrete wavelet transforms en
dc.subject.other Information technology en
dc.subject.other Textures en
dc.subject.other Ultrasonics en
dc.subject.other Feature extraction en
dc.title Multiscale geometric texture analysis of ultrasound images of carotid atherosclerosis en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ITAB.2010.5687632 en
heal.identifier.secondary 5687632 en
heal.identifier.secondary http://dx.doi.org/10.1109/ITAB.2010.5687632 en
heal.publicationDate 2010 en
heal.abstract In this paper two wavelet extension methods, the ridge let (DR1) and the fast discrete curvelet (FDC1) transforms, were used in an attempt to characterize carotid atherosclerotic plaque from B-mode ultrasound and discriminate between symptomatic and asymptomatic cases. The mean and standard deviation of the detail subimages produced for each decomposition scheme were used as texture features. Feature selection included ranking the features in terms of their divergence values. The selected features were subsequently input to a classifier using support vector machines. Both transforms produced an 82.5% overall classification performance (75% and 85% for systole and 90% and 80% for diastole for DRT and FDCT, respectively). Those preliminary results in a somewhat limited sample population showed that, in terms of classification accuracy of ultrasound images of the carotid artery, ridgelet and curvelet transforms are equivalent. The faster and most sensitive FDCT algorithm might be a reasonable choice. © 2010 IEEE. en
heal.journalName Proceedings of the IEEE/EMBS Region 8 International Conference on Information Technology Applications in Biomedicine, ITAB en
dc.identifier.doi 10.1109/ITAB.2010.5687632 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής