dc.contributor.author |
Chatzistergos, S |
en |
dc.contributor.author |
Stoitsis, J |
en |
dc.contributor.author |
Papaevangelou, A |
en |
dc.contributor.author |
Zografos, G |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T02:46:54Z |
|
dc.date.available |
2014-03-01T02:46:54Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32936 |
|
dc.subject |
Density Estimation |
en |
dc.subject |
Text Classification |
en |
dc.subject |
Breast Cancer |
en |
dc.subject.other |
Breast abnormalities |
en |
dc.subject.other |
Breast cancer risk |
en |
dc.subject.other |
Breast density |
en |
dc.subject.other |
Breast density estimation |
en |
dc.subject.other |
Breast tissues |
en |
dc.subject.other |
CAD system |
en |
dc.subject.other |
Classification rates |
en |
dc.subject.other |
Mammographic images |
en |
dc.subject.other |
Statistical characteristics |
en |
dc.subject.other |
Text classification |
en |
dc.subject.other |
Textons |
en |
dc.subject.other |
Textural characteristic |
en |
dc.subject.other |
Visual word |
en |
dc.subject.other |
Information technology |
en |
dc.subject.other |
Mammography |
en |
dc.subject.other |
Text processing |
en |
dc.title |
Parenchymal breast density estimation with the use of statistical characteristics and textons |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ITAB.2010.5687686 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ITAB.2010.5687686 |
en |
heal.identifier.secondary |
5687686 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Breast parenchymal density has been found to be a strong indicator for breast cancer risk but the process of classification by the radiologists has been proved to be quite subjective. Furthermore, recent studies have shown that the effectiveness of most modern CAD systems used for breast abnormality detection diminishes greatly when parenchymal breast tissue density is high. Therefore the existence of a system to provide automatically accurate and objective estimation of the parenchymal breast density category is of great importance. In the present work we present a method to perform breast density classification based on local textural characteristics of the image, known as textons. We make the assumption that the mammographic image comprises a ""document"" with a number of ""visual words"" and the ""document"" ""topic"" is the wanted density category. This approach allows the use of techniques originating from text classification which have been proved to be very effective. The proposed system achieved classification rates of 98.3% and 93.2% for two categories and four categories, respectively. © 2010 IEEE. |
en |
heal.journalName |
Proceedings of the IEEE/EMBS Region 8 International Conference on Information Technology Applications in Biomedicine, ITAB |
en |
dc.identifier.doi |
10.1109/ITAB.2010.5687686 |
en |