HEAL DSpace

Parenchymal breast density estimation with the use of statistical characteristics and textons

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzistergos, S en
dc.contributor.author Stoitsis, J en
dc.contributor.author Papaevangelou, A en
dc.contributor.author Zografos, G en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:46:54Z
dc.date.available 2014-03-01T02:46:54Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32936
dc.subject Density Estimation en
dc.subject Text Classification en
dc.subject Breast Cancer en
dc.subject.other Breast abnormalities en
dc.subject.other Breast cancer risk en
dc.subject.other Breast density en
dc.subject.other Breast density estimation en
dc.subject.other Breast tissues en
dc.subject.other CAD system en
dc.subject.other Classification rates en
dc.subject.other Mammographic images en
dc.subject.other Statistical characteristics en
dc.subject.other Text classification en
dc.subject.other Textons en
dc.subject.other Textural characteristic en
dc.subject.other Visual word en
dc.subject.other Information technology en
dc.subject.other Mammography en
dc.subject.other Text processing en
dc.title Parenchymal breast density estimation with the use of statistical characteristics and textons en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ITAB.2010.5687686 en
heal.identifier.secondary http://dx.doi.org/10.1109/ITAB.2010.5687686 en
heal.identifier.secondary 5687686 en
heal.publicationDate 2010 en
heal.abstract Breast parenchymal density has been found to be a strong indicator for breast cancer risk but the process of classification by the radiologists has been proved to be quite subjective. Furthermore, recent studies have shown that the effectiveness of most modern CAD systems used for breast abnormality detection diminishes greatly when parenchymal breast tissue density is high. Therefore the existence of a system to provide automatically accurate and objective estimation of the parenchymal breast density category is of great importance. In the present work we present a method to perform breast density classification based on local textural characteristics of the image, known as textons. We make the assumption that the mammographic image comprises a ""document"" with a number of ""visual words"" and the ""document"" ""topic"" is the wanted density category. This approach allows the use of techniques originating from text classification which have been proved to be very effective. The proposed system achieved classification rates of 98.3% and 93.2% for two categories and four categories, respectively. © 2010 IEEE. en
heal.journalName Proceedings of the IEEE/EMBS Region 8 International Conference on Information Technology Applications in Biomedicine, ITAB en
dc.identifier.doi 10.1109/ITAB.2010.5687686 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής