HEAL DSpace

Probabilistic contextual skylines

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sacharidis, D en
dc.contributor.author Arvanitis, A en
dc.contributor.author Sellis, T en
dc.date.accessioned 2014-03-01T02:46:57Z
dc.date.available 2014-03-01T02:46:57Z
dc.date.issued 2010 en
dc.identifier.issn 10844627 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32952
dc.subject Experimental Evaluation en
dc.subject Indexation en
dc.subject Nested Loops en
dc.subject User Profile en
dc.subject.other Attribute values en
dc.subject.other Experimental evaluation en
dc.subject.other High probability en
dc.subject.other Index based algorithm en
dc.subject.other Nested Loops en
dc.subject.other Skyline query en
dc.subject.other User profile en
dc.subject.other Indexing (of information) en
dc.title Probabilistic contextual skylines en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDE.2010.5447887 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDE.2010.5447887 en
heal.identifier.secondary 5447887 en
heal.publicationDate 2010 en
heal.abstract The skyline query returns the most interesting tuples according to a set of explicitly defined preferences among attribute values. This work relaxes this requirement, and allows users to pose meaningful skyline queries without stating their choices. To compensate for missing knowledge, we first determine a set of uncertain preferences based on user profiles, i.e., information collected for previous contexts. Then, we define a probabilistic contextual skyline query (p-CSQ) that returns the tuples which are interesting with high probability. We emphasize that, unlike past work, uncertainty lies within the query and not the data, i.e., it is in the relationships among tuples rather than in their attribute values. Furthermore, due to the nature of this uncertainty, popular skyline methods, which rely on a particular tuple visit order, do not apply for p-CSQs. Therefore, we present novel non-indexed and index-based algorithms for answering p-CSQs. Our experimental evaluation concludes that the proposed techniques are significantly more efficient compared to a standard block nested loops approach. © 2010 IEEE. en
heal.journalName Proceedings - International Conference on Data Engineering en
dc.identifier.doi 10.1109/ICDE.2010.5447887 en
dc.identifier.spage 273 en
dc.identifier.epage 284 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής