HEAL DSpace

Retrieving landmark and non-landmark images from community photo collections

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Avrithis, Y en
dc.contributor.author Kalantidis, Y en
dc.contributor.author Tolias, G en
dc.contributor.author Spyrou, E en
dc.date.accessioned 2014-03-01T02:46:58Z
dc.date.available 2014-03-01T02:46:58Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32958
dc.subject image clustering en
dc.subject image retrieval en
dc.subject sub-linear indexing, geotagging en
dc.subject.other Data sets en
dc.subject.other Image clustering en
dc.subject.other Image datasets en
dc.subject.other Photo collections en
dc.subject.other Reference image en
dc.subject.other Spatial matching en
dc.subject.other State of the art en
dc.subject.other sub-linear indexing, geotagging en
dc.subject.other Visual content en
dc.subject.other Visual feature en
dc.subject.other Wikipedia en
dc.subject.other Data processing en
dc.subject.other Indexing (of information) en
dc.subject.other Vector quantization en
dc.subject.other Walls (structural partitions) en
dc.subject.other Image retrieval en
dc.title Retrieving landmark and non-landmark images from community photo collections en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1873951.1873973 en
heal.identifier.secondary http://dx.doi.org/10.1145/1873951.1873973 en
heal.publicationDate 2010 en
heal.abstract State of the art data mining and image retrieval in community photo collections typically focus on popular subsets, e.g. images containing landmarks or associated to Wikipedia articles. We propose an image clustering scheme that, seen as vector quantization compresses a large corpus of images by grouping visually consistent ones while providing a guaranteed distortion bound. This allows us, for instance, to represent the visual content of all thousands of images depicting the Parthenon in just a few dozens of scene maps and still be able to retrieve any single, isolated, non-landmark image like a house or graffiti on a wall. Starting from a geo-tagged dataset, we first group images geographically and then visually, where each visual cluster is assumed to depict different views of the the same scene. We align all views to one reference image and construct a 2D scene map by preserving details from all images while discarding repeating visual features. Our indexing, retrieval and spatial matching scheme then operates directly on scene maps. We evaluate the precision of the proposed method on a challenging one-million urban image dataset. © 2010 ACM. en
heal.journalName MM'10 - Proceedings of the ACM Multimedia 2010 International Conference en
dc.identifier.doi 10.1145/1873951.1873973 en
dc.identifier.spage 153 en
dc.identifier.epage 162 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής