dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Kalantidis, Y |
en |
dc.contributor.author |
Tolias, G |
en |
dc.contributor.author |
Spyrou, E |
en |
dc.date.accessioned |
2014-03-01T02:46:58Z |
|
dc.date.available |
2014-03-01T02:46:58Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32958 |
|
dc.subject |
image clustering |
en |
dc.subject |
image retrieval |
en |
dc.subject |
sub-linear indexing, geotagging |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Image clustering |
en |
dc.subject.other |
Image datasets |
en |
dc.subject.other |
Photo collections |
en |
dc.subject.other |
Reference image |
en |
dc.subject.other |
Spatial matching |
en |
dc.subject.other |
State of the art |
en |
dc.subject.other |
sub-linear indexing, geotagging |
en |
dc.subject.other |
Visual content |
en |
dc.subject.other |
Visual feature |
en |
dc.subject.other |
Wikipedia |
en |
dc.subject.other |
Data processing |
en |
dc.subject.other |
Indexing (of information) |
en |
dc.subject.other |
Vector quantization |
en |
dc.subject.other |
Walls (structural partitions) |
en |
dc.subject.other |
Image retrieval |
en |
dc.title |
Retrieving landmark and non-landmark images from community photo collections |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1873951.1873973 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1873951.1873973 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
State of the art data mining and image retrieval in community photo collections typically focus on popular subsets, e.g. images containing landmarks or associated to Wikipedia articles. We propose an image clustering scheme that, seen as vector quantization compresses a large corpus of images by grouping visually consistent ones while providing a guaranteed distortion bound. This allows us, for instance, to represent the visual content of all thousands of images depicting the Parthenon in just a few dozens of scene maps and still be able to retrieve any single, isolated, non-landmark image like a house or graffiti on a wall. Starting from a geo-tagged dataset, we first group images geographically and then visually, where each visual cluster is assumed to depict different views of the the same scene. We align all views to one reference image and construct a 2D scene map by preserving details from all images while discarding repeating visual features. Our indexing, retrieval and spatial matching scheme then operates directly on scene maps. We evaluate the precision of the proposed method on a challenging one-million urban image dataset. © 2010 ACM. |
en |
heal.journalName |
MM'10 - Proceedings of the ACM Multimedia 2010 International Conference |
en |
dc.identifier.doi |
10.1145/1873951.1873973 |
en |
dc.identifier.spage |
153 |
en |
dc.identifier.epage |
162 |
en |