dc.contributor.author |
Plessas-Leonidis, S |
en |
dc.contributor.author |
Leopoulos, V |
en |
dc.contributor.author |
Kirytopoulos, K |
en |
dc.date.accessioned |
2014-03-01T02:46:58Z |
|
dc.date.available |
2014-03-01T02:46:58Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32959 |
|
dc.subject |
Case study |
en |
dc.subject |
Data mining |
en |
dc.subject |
Sales forecasting |
en |
dc.subject.other |
Data mining techniques |
en |
dc.subject.other |
Publishing industry |
en |
dc.subject.other |
Sales forecasting |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Publishing |
en |
dc.subject.other |
Research |
en |
dc.subject.other |
Sales |
en |
dc.subject.other |
Data mining |
en |
dc.title |
Revealing sales trends through data mining |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICCAE.2010.5451296 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICCAE.2010.5451296 |
en |
heal.identifier.secondary |
5451296 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Data mining is defined as the process of discovering patterns in data. This paper presents a case study of the implementation of data mining techniques in revealing sales trends within the publishing industry. Conclusions of this research, based on successful and unsuccessful trials, indicate that data mining is indeed a valuable tool, however, selection of the appropriate variables - data to be used in relevant models is the only parameter that can define the predictive success or not of the algorithms. ©2010 IEEE. |
en |
heal.journalName |
2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010 |
en |
dc.identifier.doi |
10.1109/ICCAE.2010.5451296 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
682 |
en |
dc.identifier.epage |
687 |
en |