HEAL DSpace

Revealing sales trends through data mining

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Plessas-Leonidis, S en
dc.contributor.author Leopoulos, V en
dc.contributor.author Kirytopoulos, K en
dc.date.accessioned 2014-03-01T02:46:58Z
dc.date.available 2014-03-01T02:46:58Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32959
dc.subject Case study en
dc.subject Data mining en
dc.subject Sales forecasting en
dc.subject.other Data mining techniques en
dc.subject.other Publishing industry en
dc.subject.other Sales forecasting en
dc.subject.other Forecasting en
dc.subject.other Publishing en
dc.subject.other Research en
dc.subject.other Sales en
dc.subject.other Data mining en
dc.title Revealing sales trends through data mining en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICCAE.2010.5451296 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICCAE.2010.5451296 en
heal.identifier.secondary 5451296 en
heal.publicationDate 2010 en
heal.abstract Data mining is defined as the process of discovering patterns in data. This paper presents a case study of the implementation of data mining techniques in revealing sales trends within the publishing industry. Conclusions of this research, based on successful and unsuccessful trials, indicate that data mining is indeed a valuable tool, however, selection of the appropriate variables - data to be used in relevant models is the only parameter that can define the predictive success or not of the algorithms. ©2010 IEEE. en
heal.journalName 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010 en
dc.identifier.doi 10.1109/ICCAE.2010.5451296 en
dc.identifier.volume 1 en
dc.identifier.spage 682 en
dc.identifier.epage 687 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής