HEAL DSpace

Robust human behavior modeling from multiple cameras

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kosmopoulos, DI en
dc.contributor.author Voulodimos, AS en
dc.contributor.author Varvarigou, TA en
dc.date.accessioned 2014-03-01T02:46:58Z
dc.date.available 2014-03-01T02:46:58Z
dc.date.issued 2010 en
dc.identifier.issn 10514651 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32960
dc.subject Behavior modeling en
dc.subject Fusion en
dc.subject Hidden Markov models en
dc.subject Recognition en
dc.subject.other Behavior modeling en
dc.subject.other Fusion en
dc.subject.other Gaussians en
dc.subject.other Heavy occlusion en
dc.subject.other Human behavior modeling en
dc.subject.other Human behaviors en
dc.subject.other Illumination changes en
dc.subject.other Motion history images en
dc.subject.other Multiple cameras en
dc.subject.other Multivariate Student en
dc.subject.other Real environments en
dc.subject.other Recognition en
dc.subject.other Target recognition en
dc.subject.other Training algorithms en
dc.subject.other Training data en
dc.subject.other Visual behavior en
dc.subject.other Cameras en
dc.subject.other Feature extraction en
dc.subject.other Hidden Markov models en
dc.subject.other Tracking (position) en
dc.subject.other Video cameras en
dc.subject.other Behavioral research en
dc.title Robust human behavior modeling from multiple cameras en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICPR.2010.872 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICPR.2010.872 en
heal.identifier.secondary 5597830 en
heal.publicationDate 2010 en
heal.abstract In this work, we propose a framework for classifying structured human behavior in complex real environments, where problems such as frequent illumination changes and heavy occlusions are expected. Since target recognition and tracking can be very challenging, we bypass these problems by employing an approach similar to Motion History Images for feature extraction. Furthermore, to tackle outliers residing within the training data, which might affect severely the training algorithm of models with Gaussian observation likelihoods, we scrutinize the effectiveness of the multivariate Student-t distribution as the observation likelihood of the employed Hidden Markov Models. Additionally, the problem of visibility and occlusions is addressed by providing various extensions of the framework for multiple cameras, both at the feature and at the state level. Finally, we evaluate the performance of the examined approaches under real-life visual behavior understanding scenarios and we compare and discuss the obtained results. © 2010 IEEE. en
heal.journalName Proceedings - International Conference on Pattern Recognition en
dc.identifier.doi 10.1109/ICPR.2010.872 en
dc.identifier.spage 3575 en
dc.identifier.epage 3578 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής