HEAL DSpace

Robust workflow recognition using holistic features and outlier-tolerant fused hidden markov models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voulodimos, A en
dc.contributor.author Grabner, H en
dc.contributor.author Kosmopoulos, D en
dc.contributor.author Van Gool, L en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T02:46:58Z
dc.date.available 2014-03-01T02:46:58Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32961
dc.subject Model Complexity en
dc.subject Target Recognition en
dc.subject Hidden Markov Model en
dc.subject Observation Likelihood en
dc.subject.other Complex environments en
dc.subject.other Descriptors en
dc.subject.other Different process en
dc.subject.other Heavy occlusion en
dc.subject.other Illumination changes en
dc.subject.other Limited visibility en
dc.subject.other Model complexes en
dc.subject.other Multiple cameras en
dc.subject.other Multivariate Student en
dc.subject.other Real world environments en
dc.subject.other Target recognition en
dc.subject.other Visual behavior en
dc.subject.other Work-flows en
dc.subject.other Feature extraction en
dc.subject.other Management en
dc.subject.other Neural networks en
dc.subject.other Hidden Markov models en
dc.title Robust workflow recognition using holistic features and outlier-tolerant fused hidden markov models en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-15819-3_71 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-15819-3_71 en
heal.publicationDate 2010 en
heal.abstract Monitoring real world environments such as industrial scenes is a challenging task due to heavy occlusions, resemblance of different processes, frequent illumination changes, etc. We propose a robust framework for recognizing workflows in such complex environments, boasting a threefold contribution: Firstly, we employ a novel holistic scene descriptor to efficiently and robustly model complex scenes, thus bypassing the very challenging tasks of target recognition and tracking. Secondly, we handle the problem of limited visibility and occlusions by exploiting redundancies through the use of merged information from multiple cameras. Finally, we use the multivariate Student-t distribution as the observation likelihood of the employed Hidden Markov Models, in order to further enhance robustness. We evaluate the performance of the examined approaches under real-life visual behavior understanding scenarios and we compare and discuss the obtained results. © 2010 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-15819-3_71 en
dc.identifier.volume 6352 LNCS en
dc.identifier.issue PART 1 en
dc.identifier.spage 551 en
dc.identifier.epage 560 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής