HEAL DSpace

Schwinger-Lippman volume integral equation method for green's function evaluation in an inhomogeneous sphere by an inner source using dini's series expansion

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zouros, GP en
dc.date.accessioned 2014-03-01T02:46:58Z
dc.date.available 2014-03-01T02:46:58Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32965
dc.subject Series Expansion en
dc.subject Integral Equation Method en
dc.subject.other Analytical evaluation en
dc.subject.other Elastic problems en
dc.subject.other Electromagnetic problems en
dc.subject.other Inhomogeneous density en
dc.subject.other Numerical results en
dc.subject.other Series expansion en
dc.subject.other Volume integral equation en
dc.subject.other Compressibility en
dc.subject.other Electric fields en
dc.subject.other Electromagnetism en
dc.subject.other Electromagnets en
dc.subject.other Function evaluation en
dc.subject.other Integral equations en
dc.subject.other Magnetic materials en
dc.subject.other Spheres en
dc.subject.other Green's function en
dc.title Schwinger-Lippman volume integral equation method for green's function evaluation in an inhomogeneous sphere by an inner source using dini's series expansion en
heal.type conferenceItem en
heal.identifier.primary 10.1109/MMET.2010.5611443 en
heal.identifier.secondary http://dx.doi.org/10.1109/MMET.2010.5611443 en
heal.identifier.secondary 5611443 en
heal.publicationDate 2010 en
heal.abstract The fields induced in the interior of penetrable bodies with inhomogeneous compressibility by sources placed inside them are evaluated through a Schwinger-Lippman volume integral equation. In the case of an inhomogeneous sphere, the radial part of the unknown Green's function can be expanded in a double Dini's series, which allows analytical evaluation of the involved cumbersome integrals. The case treated here can be extended to more difficult situations, involving inhomogeneous density, as well as to the corresponding electromagnetic problem, to the elastic problem or even to the electromagnetic problem for cylindrical configuration. Finally, numerical results are given for various inhomogeneous compressibility distributions. © 2010 IEEE. en
heal.journalName Mathematical Methods in Electromagnetic Theory, MMET, Conference Proceedings en
dc.identifier.doi 10.1109/MMET.2010.5611443 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής