dc.contributor.author |
Kapsalas, P |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:46:59Z |
|
dc.date.available |
2014-03-01T02:46:59Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32973 |
|
dc.subject |
affine invariant regions |
en |
dc.subject |
diffusivity velocity map |
en |
dc.subject |
morphological scale space |
en |
dc.subject.other |
Affine invariant |
en |
dc.subject.other |
Affine transformations |
en |
dc.subject.other |
Anisotropic Diffusion |
en |
dc.subject.other |
Boundary shapes |
en |
dc.subject.other |
Different scale |
en |
dc.subject.other |
Diffusivities |
en |
dc.subject.other |
Gaussian scale space |
en |
dc.subject.other |
Image regions |
en |
dc.subject.other |
Image representations |
en |
dc.subject.other |
Morphological scale-space |
en |
dc.subject.other |
Multiscales |
en |
dc.subject.other |
New approaches |
en |
dc.subject.other |
Scale-space |
en |
dc.subject.other |
Stable boundary |
en |
dc.subject.other |
Stable region |
en |
dc.subject.other |
State of the art |
en |
dc.subject.other |
Transition boundaries |
en |
dc.subject.other |
Velocity maps |
en |
dc.subject.other |
Detectors |
en |
dc.subject.other |
Diffusion |
en |
dc.title |
Shape-stable region boundary extraction via Affine Morphological Scale Space (AMSS) |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1873951.1874190 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1873951.1874190 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper we present a new approach towards the extraction of affine image regions based on detecting shape-stable boundaries from a multi-scale image representation. We construct an affine morphological scale space (AMSS) representation [1], which performs anisotropic diffusion while preserving boundaries and being invariant to affine transformations. We extract the transition boundaries of the diffusivity velocity map and track their evolution at each level of the scale-space. We then determine the stability of the boundary shape through a minimization process over different scales. Unlike most state of the art detectors which use the Gaussian scale space for multi-scale image representation, our approach is intrinsically affine invariant. We evaluate our detector by measuring repeatability of regions in transformed images of the same scene and comparing it to the state-of-the-art region detectors [2]. © 2010 ACM. |
en |
heal.journalName |
MM'10 - Proceedings of the ACM Multimedia 2010 International Conference |
en |
dc.identifier.doi |
10.1145/1873951.1874190 |
en |
dc.identifier.spage |
1215 |
en |
dc.identifier.epage |
1218 |
en |