HEAL DSpace

Solving the advection PDE on the cell broadband engine

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rokos, G en
dc.contributor.author Peteinatos, G en
dc.contributor.author Kouveli, G en
dc.contributor.author Goumas, G en
dc.contributor.author Kourtis, K en
dc.contributor.author Koziris, N en
dc.date.accessioned 2014-03-01T02:46:59Z
dc.date.available 2014-03-01T02:46:59Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32979
dc.subject Advection equation en
dc.subject Cell Broadband Engine en
dc.subject Explicit memory hierarchy en
dc.subject Instruction scheduling en
dc.subject Parallelization en
dc.subject Vectorization en
dc.subject.other Advection equations en
dc.subject.other Cell Broadband Engine en
dc.subject.other Instruction scheduling en
dc.subject.other Memory hierarchy en
dc.subject.other Parallelizations en
dc.subject.other Vectorization en
dc.subject.other Aircraft engines en
dc.subject.other Distributed parameter networks en
dc.subject.other Parallel architectures en
dc.subject.other Partial differential equations en
dc.subject.other Program compilers en
dc.subject.other Advection en
dc.title Solving the advection PDE on the cell broadband engine en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IPDPSW.2010.5470761 en
heal.identifier.secondary http://dx.doi.org/10.1109/IPDPSW.2010.5470761 en
heal.identifier.secondary 5470761 en
heal.publicationDate 2010 en
heal.abstract In this paper we present the venture of porting two different algorithms for solving the two-dimensional advection PDE on the CBE platform, an in-place and an outof- place one, and compare their computational performance, completion time and code productivity. Study of the advection equation reveals data dependencies which lead to limited performance and inefficient scaling to parallel architectures. We explore programming techniques and optimizations which maximize performance for these solver versions. The out-ofplace version is straightforward to implement and achieves greater raw performance than the in-place one, but requires more computational steps to converge. In both cases, achieving high computational performance relies heavily on manual source code optimization, due to compiler incapability to do data vectorization and efficient instruction scheduling. The latter proves to be a key factor in pursuit of high GFLOPS measurements. © 2010 IEEE. en
heal.journalName Proceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW 2010 en
dc.identifier.doi 10.1109/IPDPSW.2010.5470761 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής