dc.contributor.author |
McHedlidze, T |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:47:07Z |
|
dc.date.available |
2014-03-01T02:47:07Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33011 |
|
dc.subject |
Linear Time |
en |
dc.subject |
Polynomial Algorithm |
en |
dc.subject.other |
Mixed graph |
en |
dc.subject.other |
Orientable |
en |
dc.subject.other |
Polynomial algorithm |
en |
dc.subject.other |
Recognition algorithm |
en |
dc.subject.other |
Computer science |
en |
dc.title |
Unilateral orientation of mixed graphs |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-11266-9_49 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-11266-9_49 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A digraph D is unilateral if for every pair x, y of its vertices there exists a directed path from x to y, or a directed path from y to x, or both. A mixed graph M=(V,A,E) with arc-set A and edge-set E accepts a unilateral orientation, if its edges can be oriented so that the resulting digraph is unilateral. In this paper, we present the first linear-time recognition algorithm for unilaterally orientable mixed graphs. Based on this algorithm we derive a polynomial algorithm for testing whether a unilaterally orientable mixed graph has a unique unilateral orientation. © 2010 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-11266-9_49 |
en |
dc.identifier.volume |
5901 LNCS |
en |
dc.identifier.spage |
588 |
en |
dc.identifier.epage |
599 |
en |