HEAL DSpace

Using a region and visual word approach towards semantic image retrieval

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kalantidis, Y en
dc.contributor.author Spyrou, E en
dc.contributor.author Mylonas, P en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:47:08Z
dc.date.available 2014-03-01T02:47:08Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33013
dc.subject Image Retrieval en
dc.subject k-means clustering en
dc.subject Semantic Similarity en
dc.subject Texture Features en
dc.subject Bag of Words en
dc.subject.other Bag of words en
dc.subject.other Color and texture features en
dc.subject.other Database images en
dc.subject.other Image regions en
dc.subject.other K-means clustering en
dc.subject.other Model vectors en
dc.subject.other Model-based en
dc.subject.other Region types en
dc.subject.other Region-based en
dc.subject.other Semantic image retrieval en
dc.subject.other SIFT descriptors en
dc.subject.other Similar image en
dc.subject.other Visual vocabularies en
dc.subject.other Visual word en
dc.subject.other Clustering algorithms en
dc.subject.other Image retrieval en
dc.subject.other Semantics en
dc.subject.other Image segmentation en
dc.title Using a region and visual word approach towards semantic image retrieval en
heal.type conferenceItem en
heal.identifier.primary 10.1109/SMAP.2010.5706869 en
heal.identifier.secondary http://dx.doi.org/10.1109/SMAP.2010.5706869 en
heal.identifier.secondary 5706869 en
heal.publicationDate 2010 en
heal.abstract This paper presents a region-based approach towards semantic image retrieval. Combining segmentation and the popular Bag-of-Words model, a visual vocabulary of the most common ""region types"" is first constructed using the database images. The visual words are consistent image regions, extracted through a k-means clustering process. The regions are described with color and texture features, and a ""model vector"" is then formed to capture the association of a given image to the visual words. Opposite to other methods, we do not form the model vector based on all region types, but rather to a smaller subset. We show that the presented approach can be efficiently applied to image retrieval when the goal is to retrieve semantically similar rather than visually similar images. We show that our method outperforms the commonly used Bag-of-Words model based on local SIFT descriptors. © 2010 IEEE. en
heal.journalName Proceedings - 2010 5th International Workshop on Semantic Media Adaptation and Personalization, SMAP 2010 en
dc.identifier.doi 10.1109/SMAP.2010.5706869 en
dc.identifier.spage 85 en
dc.identifier.epage 89 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής