HEAL DSpace

Visualizing multidimensional data through granularity-dependent Spatialization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kontaxaki, S en
dc.contributor.author Tomai, E en
dc.contributor.author Kokla, M en
dc.contributor.author Kavouras, M en
dc.date.accessioned 2014-03-01T02:47:09Z
dc.date.available 2014-03-01T02:47:09Z
dc.date.issued 2010 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33017
dc.subject Granularity-depended visualization en
dc.subject Information visualization en
dc.subject Spatialization en
dc.subject.other Dimension reduction techniques en
dc.subject.other Information visualization en
dc.subject.other Kernel Density Estimation en
dc.subject.other Multidimensional data en
dc.subject.other New approaches en
dc.subject.other Spatial metaphors en
dc.subject.other Spatialization en
dc.subject.other Visualization of information en
dc.subject.other Data handling en
dc.subject.other Information analysis en
dc.subject.other Information systems en
dc.subject.other Visualization en
dc.subject.other Data visualization en
dc.title Visualizing multidimensional data through granularity-dependent Spatialization en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.838430 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.838430 en
heal.identifier.secondary 75300M en
heal.publicationDate 2010 en
heal.abstract Spatialization is a special kind of visualization that projects multidimensional data into low-dimensional representational spaces by making use of spatial metaphors. Spatialization methods face a dual challenge: on the one hand, to apply dimension reduction techniques in order to overcome the limitations of the representational space, and on the other hand, to provide a metaphoric framework for the visualization of information at different levels of granularity. This paper investigates how granularity is modeled and visualized by the existing spatialization methods, and introduces a new approach based on kernel density estimation and landscape metaphor. According to our approach, clusters of multidimensional data are revealed by landscape ""relief"", and are hierarchically organized into different levels of granularity through landscape ""smoothness."" In addition, it is demonstrated, herein, how the exploration of information at different levels of granularity is supported by appropriate operations in the framework of an interactive spatialization environment prototype. © 2010 SPIE-IS&T. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.838430 en
dc.identifier.volume 7530 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής