HEAL DSpace

A prediction model for the number of intrinsic mode functions in biomedical signals: The case of electrocardiogram

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karagiannis, A en
dc.contributor.author Constantinou, P en
dc.date.accessioned 2014-03-01T02:47:15Z
dc.date.available 2014-03-01T02:47:15Z
dc.date.issued 2011 en
dc.identifier.issn 1746-8094 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33030
dc.subject Biomedical signals en
dc.subject Electrocardiogram en
dc.subject Empirical mode decomposition en
dc.subject Extrema en
dc.subject Intrinsic mode functions en
dc.subject Kurtosis en
dc.subject Prediction model en
dc.subject.other Biomedical signal en
dc.subject.other Electrocardiogram en
dc.subject.other Empirical Mode Decomposition en
dc.subject.other Extrema en
dc.subject.other Intrinsic Mode functions en
dc.subject.other Kurtosis en
dc.subject.other Prediction model en
dc.subject.other Bioelectric phenomena en
dc.subject.other Electrocardiography en
dc.subject.other Electrochromic devices en
dc.subject.other Forecasting en
dc.subject.other Mathematical models en
dc.subject.other Time series en
dc.subject.other Computer simulation en
dc.subject.other computer simulation en
dc.subject.other conference paper en
dc.subject.other electrocardiogram en
dc.subject.other empirical mode decomposition en
dc.subject.other intrinsic mode function en
dc.subject.other mathematical model en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other signal processing en
dc.subject.other validation study en
dc.title A prediction model for the number of intrinsic mode functions in biomedical signals: The case of electrocardiogram en
heal.type conferenceItem en
heal.identifier.primary 10.1016/j.bspc.2011.02.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.bspc.2011.02.005 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract In this paper, the open issue of prediction of the number of intrinsic mode functions (IMF) extracted from a time series after the application of empirical mode decomposition (EMD) is addressed and a methodology is presented directing towards an a priori prediction model. Parameters related with the time series are measured or calculated and used by the model in order to define a closed set in which the actual total number of IMFs is expected to be included after the application of EMD. The prediction model is verified by a large number of tests on simulated electrocardiogram (ECG) time series and after refinement it is validated using real ECG time series from Physionet MIT-BIH database. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Biomedical Signal Processing and Control en
dc.identifier.doi 10.1016/j.bspc.2011.02.005 en
dc.identifier.isi ISI:000293480100004 en
dc.identifier.volume 6 en
dc.identifier.issue 3 en
dc.identifier.spage 231 en
dc.identifier.epage 243 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής