dc.contributor.author |
Karagiannis, A |
en |
dc.contributor.author |
Constantinou, P |
en |
dc.date.accessioned |
2014-03-01T02:47:15Z |
|
dc.date.available |
2014-03-01T02:47:15Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1746-8094 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33030 |
|
dc.subject |
Biomedical signals |
en |
dc.subject |
Electrocardiogram |
en |
dc.subject |
Empirical mode decomposition |
en |
dc.subject |
Extrema |
en |
dc.subject |
Intrinsic mode functions |
en |
dc.subject |
Kurtosis |
en |
dc.subject |
Prediction model |
en |
dc.subject.other |
Biomedical signal |
en |
dc.subject.other |
Electrocardiogram |
en |
dc.subject.other |
Empirical Mode Decomposition |
en |
dc.subject.other |
Extrema |
en |
dc.subject.other |
Intrinsic Mode functions |
en |
dc.subject.other |
Kurtosis |
en |
dc.subject.other |
Prediction model |
en |
dc.subject.other |
Bioelectric phenomena |
en |
dc.subject.other |
Electrocardiography |
en |
dc.subject.other |
Electrochromic devices |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
conference paper |
en |
dc.subject.other |
electrocardiogram |
en |
dc.subject.other |
empirical mode decomposition |
en |
dc.subject.other |
intrinsic mode function |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
signal processing |
en |
dc.subject.other |
validation study |
en |
dc.title |
A prediction model for the number of intrinsic mode functions in biomedical signals: The case of electrocardiogram |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.bspc.2011.02.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.bspc.2011.02.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper, the open issue of prediction of the number of intrinsic mode functions (IMF) extracted from a time series after the application of empirical mode decomposition (EMD) is addressed and a methodology is presented directing towards an a priori prediction model. Parameters related with the time series are measured or calculated and used by the model in order to define a closed set in which the actual total number of IMFs is expected to be included after the application of EMD. The prediction model is verified by a large number of tests on simulated electrocardiogram (ECG) time series and after refinement it is validated using real ECG time series from Physionet MIT-BIH database. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Biomedical Signal Processing and Control |
en |
dc.identifier.doi |
10.1016/j.bspc.2011.02.005 |
en |
dc.identifier.isi |
ISI:000293480100004 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
231 |
en |
dc.identifier.epage |
243 |
en |