dc.contributor.author |
Kyriazos, GK |
en |
dc.contributor.author |
Gerostathopoulos, IT |
en |
dc.contributor.author |
Kolias, VD |
en |
dc.contributor.author |
Stoitsis, JS |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T02:47:15Z |
|
dc.date.available |
2014-03-01T02:47:15Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1557170X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33032 |
|
dc.subject.other |
Customizable |
en |
dc.subject.other |
Information contents |
en |
dc.subject.other |
Intelligent search mechanisms |
en |
dc.subject.other |
Keyword search |
en |
dc.subject.other |
Knowledge integration |
en |
dc.subject.other |
Medical experts |
en |
dc.subject.other |
Medical images |
en |
dc.subject.other |
Medical practice |
en |
dc.subject.other |
Online annotation |
en |
dc.subject.other |
Remote access |
en |
dc.subject.other |
Semantic content |
en |
dc.subject.other |
Service Oriented |
en |
dc.subject.other |
Biology |
en |
dc.subject.other |
Interoperability |
en |
dc.subject.other |
Knowledge representation |
en |
dc.subject.other |
Medicine |
en |
dc.subject.other |
Ontology |
en |
dc.subject.other |
Search engines |
en |
dc.subject.other |
Semantic Web |
en |
dc.subject.other |
Medical imaging |
en |
dc.title |
A semantically-aided approach for online annotation and retrieval of medical images |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IEMBS.2011.6090662 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IEMBS.2011.6090662 |
en |
heal.identifier.secondary |
6090662 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The need for annotating the continuously increasing volume of medical image data is recognized from medical experts for a variety of purposes, regardless if this is medical practice, research or education. The rich information content latent in medical images can be made explicit and formal with the use of well-defined ontologies. Evolution of the Semantic Web now offers a unique opportunity of a web-based, service-oriented approach. Remote access to FMA and ICD-10 reference ontologies provides the ontological annotation framework. The proposed system utilizes this infrastructure to provide a customizable and robust annotation procedure. It also provides an intelligent search mechanism indicating the advantages of semantic over keyword search. The common representation layer discussed facilitates interoperability between institutions and systems, while semantic content enables inference and knowledge integration. © 2011 IEEE. |
en |
heal.journalName |
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
en |
dc.identifier.doi |
10.1109/IEMBS.2011.6090662 |
en |
dc.identifier.volume |
2011 |
en |
dc.identifier.spage |
2372 |
en |
dc.identifier.epage |
2375 |
en |