HEAL DSpace

A supervised approach to movie emotion tracking

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Malandrakis, N en
dc.contributor.author Potamianos, A en
dc.contributor.author Evangelopoulos, G en
dc.contributor.author Zlatintsi, A en
dc.date.accessioned 2014-03-01T02:47:15Z
dc.date.available 2014-03-01T02:47:15Z
dc.date.issued 2011 en
dc.identifier.issn 15206149 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33035
dc.subject Emotion recognition en
dc.subject Machine learning en
dc.subject Multimedia databases en
dc.subject Psychological emotion dimensions en
dc.subject.other Affective response en
dc.subject.other Annotated database en
dc.subject.other Audio-visual features en
dc.subject.other Content recognition en
dc.subject.other Continuous scale en
dc.subject.other Continuous time en
dc.subject.other Continuous value en
dc.subject.other Emotion recognition en
dc.subject.other Feature sets en
dc.subject.other Machine-learning en
dc.subject.other Macroscopic levels en
dc.subject.other Multimedia database en
dc.subject.other Psychological emotion dimensions en
dc.subject.other Spline interpolation en
dc.subject.other Supervised algorithm en
dc.subject.other Supervised learning methods en
dc.subject.other Video frame en
dc.subject.other Continuous time systems en
dc.subject.other Database systems en
dc.subject.other Hidden Markov models en
dc.subject.other Interpolation en
dc.subject.other Learning systems en
dc.subject.other Signal processing en
dc.subject.other Speech communication en
dc.subject.other Speech recognition en
dc.subject.other Motion pictures en
dc.title A supervised approach to movie emotion tracking en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICASSP.2011.5946961 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICASSP.2011.5946961 en
heal.identifier.secondary 5946961 en
heal.publicationDate 2011 en
heal.abstract In this paper, we present experiments on continuous time, continuous scale affective movie content recognition (emotion tracking). A major obstacle for emotion research has been the lack of appropriately annotated databases, limiting the potential for supervised algorithms. To that end we develop and present a database of movie affect, annotated in continuous time, on a continuous valence-arousal scale. Supervised learning methods are proposed to model the continuous affective response using hidden Markov Models (independent) in each dimension. These models classify each video frame into one of seven discrete categories (in each dimension); the discrete-valued curves are then converted to continuous values via spline interpolation. A variety of audio-visual features are investigated and an optimal feature set is selected. The potential of the method is experimentally verified on twelve 30-minute movie clips with good precision at a macroscopic level. © 2011 IEEE. en
heal.journalName ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings en
dc.identifier.doi 10.1109/ICASSP.2011.5946961 en
dc.identifier.spage 2376 en
dc.identifier.epage 2379 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής