dc.contributor.author |
Malandrakis, N |
en |
dc.contributor.author |
Potamianos, A |
en |
dc.contributor.author |
Evangelopoulos, G |
en |
dc.contributor.author |
Zlatintsi, A |
en |
dc.date.accessioned |
2014-03-01T02:47:15Z |
|
dc.date.available |
2014-03-01T02:47:15Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
15206149 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33035 |
|
dc.subject |
Emotion recognition |
en |
dc.subject |
Machine learning |
en |
dc.subject |
Multimedia databases |
en |
dc.subject |
Psychological emotion dimensions |
en |
dc.subject.other |
Affective response |
en |
dc.subject.other |
Annotated database |
en |
dc.subject.other |
Audio-visual features |
en |
dc.subject.other |
Content recognition |
en |
dc.subject.other |
Continuous scale |
en |
dc.subject.other |
Continuous time |
en |
dc.subject.other |
Continuous value |
en |
dc.subject.other |
Emotion recognition |
en |
dc.subject.other |
Feature sets |
en |
dc.subject.other |
Machine-learning |
en |
dc.subject.other |
Macroscopic levels |
en |
dc.subject.other |
Multimedia database |
en |
dc.subject.other |
Psychological emotion dimensions |
en |
dc.subject.other |
Spline interpolation |
en |
dc.subject.other |
Supervised algorithm |
en |
dc.subject.other |
Supervised learning methods |
en |
dc.subject.other |
Video frame |
en |
dc.subject.other |
Continuous time systems |
en |
dc.subject.other |
Database systems |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.subject.other |
Interpolation |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Speech communication |
en |
dc.subject.other |
Speech recognition |
en |
dc.subject.other |
Motion pictures |
en |
dc.title |
A supervised approach to movie emotion tracking |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICASSP.2011.5946961 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICASSP.2011.5946961 |
en |
heal.identifier.secondary |
5946961 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper, we present experiments on continuous time, continuous scale affective movie content recognition (emotion tracking). A major obstacle for emotion research has been the lack of appropriately annotated databases, limiting the potential for supervised algorithms. To that end we develop and present a database of movie affect, annotated in continuous time, on a continuous valence-arousal scale. Supervised learning methods are proposed to model the continuous affective response using hidden Markov Models (independent) in each dimension. These models classify each video frame into one of seven discrete categories (in each dimension); the discrete-valued curves are then converted to continuous values via spline interpolation. A variety of audio-visual features are investigated and an optimal feature set is selected. The potential of the method is experimentally verified on twelve 30-minute movie clips with good precision at a macroscopic level. © 2011 IEEE. |
en |
heal.journalName |
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
en |
dc.identifier.doi |
10.1109/ICASSP.2011.5946961 |
en |
dc.identifier.spage |
2376 |
en |
dc.identifier.epage |
2379 |
en |