HEAL DSpace

Accelerating tumour growth simulations on many-core architectures: A case study on the use of GPGPU within VPH

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Liu, B en
dc.contributor.author Clapworthy, GJ en
dc.contributor.author Dong, F en
dc.contributor.author Kolokotroni, E en
dc.contributor.author Stamatakos, G en
dc.date.accessioned 2014-03-01T02:47:16Z
dc.date.available 2014-03-01T02:47:16Z
dc.date.issued 2011 en
dc.identifier.issn 10939547 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33041
dc.subject CUDA en
dc.subject GPGPU en
dc.subject in silico oncology en
dc.subject multi-GPU en
dc.subject Tumour simulation en
dc.subject Virtual Physiological Human en
dc.subject VPH en
dc.subject.other CUDA en
dc.subject.other GPGPU en
dc.subject.other multi-GPU en
dc.subject.other Virtual physiological human en
dc.subject.other VPH en
dc.subject.other Physiology en
dc.subject.other Program processors en
dc.subject.other Tumors en
dc.subject.other Virtual reality en
dc.subject.other Visualization en
dc.subject.other Computer graphics equipment en
dc.title Accelerating tumour growth simulations on many-core architectures: A case study on the use of GPGPU within VPH en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IV.2011.45 en
heal.identifier.secondary http://dx.doi.org/10.1109/IV.2011.45 en
heal.identifier.secondary 6004108 en
heal.publicationDate 2011 en
heal.abstract Simulators of tumour growth can estimate the evolution of tumour volume and the quantity of various categories of cells as functions of time. However, the execution time of each simulation often takes several dozens of minutes (depending upon the dataset resolution), which clearly prevents easy interaction. The modern graphics processing unit (GPU) is not only a powerful graphics engine but also a highly parallel programmable processor featuring peak arithmetic performance and memory bandwidth that substantially outpaces its CPU counterpart. However, despite this, the GPU is little used in the context of the Virtual Physiological Human (VPH). This paper provides a case study to demonstrate the performance advantages that can be gained by using the GPU appropriately in the context of a VPH project in which the study of tumour growth is a central activity. We also analyse the algorithm performance on different modern parallel processing architectures, including multicore CPU and many-core GPU. © 2011 IEEE. en
heal.journalName Proceedings of the International Conference on Information Visualisation en
dc.identifier.doi 10.1109/IV.2011.45 en
dc.identifier.spage 601 en
dc.identifier.epage 609 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής