dc.contributor.author |
Liu, B |
en |
dc.contributor.author |
Clapworthy, GJ |
en |
dc.contributor.author |
Dong, F |
en |
dc.contributor.author |
Kolokotroni, E |
en |
dc.contributor.author |
Stamatakos, G |
en |
dc.date.accessioned |
2014-03-01T02:47:16Z |
|
dc.date.available |
2014-03-01T02:47:16Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
10939547 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33041 |
|
dc.subject |
CUDA |
en |
dc.subject |
GPGPU |
en |
dc.subject |
in silico oncology |
en |
dc.subject |
multi-GPU |
en |
dc.subject |
Tumour simulation |
en |
dc.subject |
Virtual Physiological Human |
en |
dc.subject |
VPH |
en |
dc.subject.other |
CUDA |
en |
dc.subject.other |
GPGPU |
en |
dc.subject.other |
multi-GPU |
en |
dc.subject.other |
Virtual physiological human |
en |
dc.subject.other |
VPH |
en |
dc.subject.other |
Physiology |
en |
dc.subject.other |
Program processors |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Virtual reality |
en |
dc.subject.other |
Visualization |
en |
dc.subject.other |
Computer graphics equipment |
en |
dc.title |
Accelerating tumour growth simulations on many-core architectures: A case study on the use of GPGPU within VPH |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IV.2011.45 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IV.2011.45 |
en |
heal.identifier.secondary |
6004108 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Simulators of tumour growth can estimate the evolution of tumour volume and the quantity of various categories of cells as functions of time. However, the execution time of each simulation often takes several dozens of minutes (depending upon the dataset resolution), which clearly prevents easy interaction. The modern graphics processing unit (GPU) is not only a powerful graphics engine but also a highly parallel programmable processor featuring peak arithmetic performance and memory bandwidth that substantially outpaces its CPU counterpart. However, despite this, the GPU is little used in the context of the Virtual Physiological Human (VPH). This paper provides a case study to demonstrate the performance advantages that can be gained by using the GPU appropriately in the context of a VPH project in which the study of tumour growth is a central activity. We also analyse the algorithm performance on different modern parallel processing architectures, including multicore CPU and many-core GPU. © 2011 IEEE. |
en |
heal.journalName |
Proceedings of the International Conference on Information Visualisation |
en |
dc.identifier.doi |
10.1109/IV.2011.45 |
en |
dc.identifier.spage |
601 |
en |
dc.identifier.epage |
609 |
en |