HEAL DSpace

Advances in phonetics-based sub-unit modeling for transcription alignment and sign language recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pitsikalis, V en
dc.contributor.author Theodorakis, S en
dc.contributor.author Vogler, C en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T02:47:16Z
dc.date.available 2014-03-01T02:47:16Z
dc.date.issued 2011 en
dc.identifier.issn 21607508 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33045
dc.subject Feature Extraction en
dc.subject Sign Language en
dc.subject Sign Language Recognition en
dc.subject Speech Recognition en
dc.subject Statistical Model en
dc.subject Visual Features en
dc.subject Greek Sign Language en
dc.subject Hidden Markov Model en
dc.subject Pure Data en
dc.subject.other Automatic recognition en
dc.subject.other Boundary information en
dc.subject.other Data-driven approach en
dc.subject.other Phonetic transcriptions en
dc.subject.other Sign language en
dc.subject.other Sign Language recognition en
dc.subject.other Statistical models en
dc.subject.other Structured sequence en
dc.subject.other Sub-units en
dc.subject.other Symbolic processing en
dc.subject.other Visual data en
dc.subject.other Visual feature en
dc.subject.other Computer vision en
dc.subject.other Transcription en
dc.subject.other Linguistics en
dc.title Advances in phonetics-based sub-unit modeling for transcription alignment and sign language recognition en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CVPRW.2011.5981681 en
heal.identifier.secondary http://dx.doi.org/10.1109/CVPRW.2011.5981681 en
heal.identifier.secondary 5981681 en
heal.publicationDate 2011 en
heal.abstract We explore novel directions for incorporating phonetic transcriptions into sub-unit based statistical models for sign language recognition. First, we employ a new symbolic processing approach for converting sign language annotations, based on HamNoSys symbols, into structured sequences of labels according to the Posture-Detention-Transition-Steady Shift phonetic model. Next, we exploit these labels, and their correspondence with visual features to construct phonetics-based statistical sub-unit models. We also align these sequences, via the statistical sub-unit construction and decoding, to the visual data to extract time boundary information that they would lack otherwise. The resulting phonetic sub-units offer new perspectives for sign language analysis, phonetic modeling, and automatic recognition. We evaluate this approach via sign language recognition experiments on an extended Lemmas Corpus of Greek Sign Language, which results not only in improved performance compared to pure data-driven approaches, but also in meaningful phonetic sub-unit models that can be further exploited in interdisciplinary sign language analysis. © 2011 IEEE. en
heal.journalName IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops en
dc.identifier.doi 10.1109/CVPRW.2011.5981681 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής