dc.contributor.author |
Anagnostopoulos, V |
en |
dc.contributor.author |
Sardis, E |
en |
dc.contributor.author |
Varvarigou, T |
en |
dc.date.accessioned |
2014-03-01T02:47:16Z |
|
dc.date.available |
2014-03-01T02:47:16Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33052 |
|
dc.subject |
Artificial intelligence |
en |
dc.subject |
Behavior recognition |
en |
dc.subject |
Human computer interaction |
en |
dc.subject |
Industrial workflows |
en |
dc.subject |
Surveillance |
en |
dc.subject.other |
Automated surveillance system |
en |
dc.subject.other |
Behavior recognition |
en |
dc.subject.other |
Industrial workflows |
en |
dc.subject.other |
Object detection and recognition |
en |
dc.subject.other |
Surveillance |
en |
dc.subject.other |
Surveillance systems |
en |
dc.subject.other |
Training modules |
en |
dc.subject.other |
Visual surveillance |
en |
dc.subject.other |
Workflow execution |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Behavioral research |
en |
dc.subject.other |
Computer architecture |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Industry |
en |
dc.subject.other |
Lakes |
en |
dc.subject.other |
Machinery |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Security systems |
en |
dc.subject.other |
Monitoring |
en |
dc.title |
An industrial visual surveillance framework based on a pre-configured behavior repertoire: A practical approach |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/UKSIM.2011.42 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/UKSIM.2011.42 |
en |
heal.identifier.secondary |
5754211 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We provide a practical industrial visual surveillance framework based on the notion of visual trap points. Instead of using the whole machinery of computer vision in order to verify correct workflow execution we re-factor the behavior training module to a pre-configured pool of allowed behaviors. We exploit humans' ability to distinguish tasks and allow for an automated surveillance system to accomplish the surveillance phase. Computer vision methods are used only for the object detection and recognition, and for this reason are re-positioned to the lower levels of an architecture for surveillance systems. © 2011 IEEE. |
en |
heal.journalName |
Proceedings - 2011 UKSim 13th International Conference on Modelling and Simulation, UKSim 2011 |
en |
dc.identifier.doi |
10.1109/UKSIM.2011.42 |
en |
dc.identifier.spage |
177 |
en |
dc.identifier.epage |
182 |
en |