dc.contributor.author |
Fragiadakis, M |
en |
dc.contributor.author |
Lagaros, ND |
en |
dc.date.accessioned |
2014-03-01T02:47:17Z |
|
dc.date.available |
2014-03-01T02:47:17Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33053 |
|
dc.subject |
Life-cycle cost |
en |
dc.subject |
Particle swarm optimisation |
en |
dc.subject |
Performance-based design |
en |
dc.subject |
Pushover analysis |
en |
dc.subject |
Reliability-based optimisation |
en |
dc.subject |
Single and multiple design objectives |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Lifecycle costs |
en |
dc.subject.other |
Particle swarm optimisation |
en |
dc.subject.other |
Performance based design |
en |
dc.subject.other |
Pushover analysis |
en |
dc.subject.other |
Single and multiple design objectives |
en |
dc.subject.other |
Cost benefit analysis |
en |
dc.subject.other |
Costs |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Dynamic analysis |
en |
dc.subject.other |
Life cycle |
en |
dc.subject.other |
Ocean structures |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.subject.other |
Reliability analysis |
en |
dc.subject.other |
Seismology |
en |
dc.subject.other |
Shape optimization |
en |
dc.subject.other |
Structural analysis |
en |
dc.subject.other |
Structural optimization |
en |
dc.subject.other |
Seismic design |
en |
dc.title |
An overview to structural seismic design optimisation frameworks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.compstruc.2010.10.021 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compstruc.2010.10.021 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The application of the performance-based seismic design concept using alternative formulations is presented in this work. The formulations discussed, are implemented within an automated structural design framework using a metaheuristic optimisation algorithm. Such frameworks are able to accommodate any advanced - linear or nonlinear, static or dynamic - analysis procedure and thus replace, the conventional trial-and-error process. The formulations presented treat the seismic design problem in a deterministic or a probabilistic manner, with one or more objectives that represent the initial cost or the cost of future earthquake losses that may occur during the lifetime of a structural system. Furthermore, the implementations discussed are all consistent with the performance-based design concept and take into consideration the structural response at a number of limit-states, from serviceability to collapse. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.doi |
10.1016/j.compstruc.2010.10.021 |
en |
dc.identifier.isi |
ISI:000292418000031 |
en |
dc.identifier.volume |
89 |
en |
dc.identifier.issue |
11-12 |
en |
dc.identifier.spage |
1155 |
en |
dc.identifier.epage |
1165 |
en |