dc.contributor.author |
Yu, S |
en |
dc.contributor.author |
Zhao, G |
en |
dc.contributor.author |
Guo, S |
en |
dc.contributor.author |
Yang, X |
en |
dc.contributor.author |
Vasilakos, AV |
en |
dc.date.accessioned |
2014-03-01T02:47:17Z |
|
dc.date.available |
2014-03-01T02:47:17Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33060 |
|
dc.subject |
attack simulation |
en |
dc.subject |
botnet |
en |
dc.subject |
browsing behavior |
en |
dc.subject.other |
Application layers |
en |
dc.subject.other |
attack simulation |
en |
dc.subject.other |
Attack traffic |
en |
dc.subject.other |
botnet |
en |
dc.subject.other |
Botnets |
en |
dc.subject.other |
Browsing behavior |
en |
dc.subject.other |
DDoS Attack |
en |
dc.subject.other |
Detection algorithm |
en |
dc.subject.other |
False negative rate |
en |
dc.subject.other |
False negatives |
en |
dc.subject.other |
Intrusion Detection Systems |
en |
dc.subject.other |
Inverse Gaussian distribution |
en |
dc.subject.other |
Markov model |
en |
dc.subject.other |
Novel applications |
en |
dc.subject.other |
Pareto distributions |
en |
dc.subject.other |
Real traffic |
en |
dc.subject.other |
Statistical distribution |
en |
dc.subject.other |
Time interval |
en |
dc.subject.other |
Web page |
en |
dc.subject.other |
Zipf-like distribution |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Intrusion detection |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
User interfaces |
en |
dc.subject.other |
Websites |
en |
dc.subject.other |
Behavioral research |
en |
dc.title |
Browsing behavior mimicking attacks on popular web sites for large botnets |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/INFCOMW.2011.5928949 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/INFCOMW.2011.5928949 |
en |
heal.identifier.secondary |
5928949 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
With the significant growth of botnets, application layer DDoS attacks are much easier to launch using large botnet, and false negative is always a problem for intrusion detection systems in real practice. In this paper, we propose a novel application layer DDoS attack tool, which mimics human browsing behavior following three statistical distributions, the Zipf-like distribution for web page popularity, the Pareto distribution for page request time interval for an individual browser, and the inverse Gaussian distribution for length of browsing path. A Markov model is established for individual bot to generate attack request traffic. Our experiments indicated that the attack traffic that generated by the proposed tool is pretty similar to the real traffic. As a result, the current statistics based detection algorithms will result high false negative rate in general. In order to counter this kind of attacks, we discussed a few preliminary solutions at the end of this paper. © 2011 IEEE. |
en |
heal.journalName |
2011 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2011 |
en |
dc.identifier.doi |
10.1109/INFCOMW.2011.5928949 |
en |
dc.identifier.spage |
947 |
en |
dc.identifier.epage |
951 |
en |