HEAL DSpace

Browsing behavior mimicking attacks on popular web sites for large botnets

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Yu, S en
dc.contributor.author Zhao, G en
dc.contributor.author Guo, S en
dc.contributor.author Yang, X en
dc.contributor.author Vasilakos, AV en
dc.date.accessioned 2014-03-01T02:47:17Z
dc.date.available 2014-03-01T02:47:17Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33060
dc.subject attack simulation en
dc.subject botnet en
dc.subject browsing behavior en
dc.subject.other Application layers en
dc.subject.other attack simulation en
dc.subject.other Attack traffic en
dc.subject.other botnet en
dc.subject.other Botnets en
dc.subject.other Browsing behavior en
dc.subject.other DDoS Attack en
dc.subject.other Detection algorithm en
dc.subject.other False negative rate en
dc.subject.other False negatives en
dc.subject.other Intrusion Detection Systems en
dc.subject.other Inverse Gaussian distribution en
dc.subject.other Markov model en
dc.subject.other Novel applications en
dc.subject.other Pareto distributions en
dc.subject.other Real traffic en
dc.subject.other Statistical distribution en
dc.subject.other Time interval en
dc.subject.other Web page en
dc.subject.other Zipf-like distribution en
dc.subject.other Computer simulation en
dc.subject.other Intrusion detection en
dc.subject.other Markov processes en
dc.subject.other User interfaces en
dc.subject.other Websites en
dc.subject.other Behavioral research en
dc.title Browsing behavior mimicking attacks on popular web sites for large botnets en
heal.type conferenceItem en
heal.identifier.primary 10.1109/INFCOMW.2011.5928949 en
heal.identifier.secondary http://dx.doi.org/10.1109/INFCOMW.2011.5928949 en
heal.identifier.secondary 5928949 en
heal.publicationDate 2011 en
heal.abstract With the significant growth of botnets, application layer DDoS attacks are much easier to launch using large botnet, and false negative is always a problem for intrusion detection systems in real practice. In this paper, we propose a novel application layer DDoS attack tool, which mimics human browsing behavior following three statistical distributions, the Zipf-like distribution for web page popularity, the Pareto distribution for page request time interval for an individual browser, and the inverse Gaussian distribution for length of browsing path. A Markov model is established for individual bot to generate attack request traffic. Our experiments indicated that the attack traffic that generated by the proposed tool is pretty similar to the real traffic. As a result, the current statistics based detection algorithms will result high false negative rate in general. In order to counter this kind of attacks, we discussed a few preliminary solutions at the end of this paper. © 2011 IEEE. en
heal.journalName 2011 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2011 en
dc.identifier.doi 10.1109/INFCOMW.2011.5928949 en
dc.identifier.spage 947 en
dc.identifier.epage 951 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής