HEAL DSpace

Crowdsourcing network inference: The DREAM predictive signaling network challenge

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Prill, RJ en
dc.contributor.author Saez-Rodriguez, J en
dc.contributor.author Alexopoulos, LG en
dc.contributor.author Sorger, PK en
dc.contributor.author Stolovitzky, G en
dc.date.accessioned 2014-03-01T02:47:19Z
dc.date.available 2014-03-01T02:47:19Z
dc.date.issued 2011 en
dc.identifier.issn 1937-9145 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33073
dc.subject.other accuracy en
dc.subject.other calculation en
dc.subject.other conference paper en
dc.subject.other cost en
dc.subject.other human en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other protein analysis en
dc.subject.other protein interaction en
dc.subject.other protein phosphorylation en
dc.subject.other protein signaling network en
dc.subject.other proteomics en
dc.subject.other signal transduction en
dc.subject.other article en
dc.subject.other biology en
dc.subject.other cooperation en
dc.subject.other genetics en
dc.subject.other metabolism en
dc.subject.other methodology en
dc.subject.other protein protein interaction en
dc.subject.other phosphoprotein en
dc.subject.other Computational Biology en
dc.subject.other Cooperative Behavior en
dc.subject.other Phosphoproteins en
dc.subject.other Protein Interaction Maps en
dc.subject.other Proteomics en
dc.subject.other Signal Transduction en
dc.title Crowdsourcing network inference: The DREAM predictive signaling network challenge en
heal.type conferenceItem en
heal.identifier.primary 10.1126/scisignal.2002212 en
heal.identifier.secondary http://dx.doi.org/10.1126/scisignal.2002212 en
heal.identifier.secondary mr7 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Computational analyses of systematic measurements on the states and activities of signaling proteins (as captured by phosphoproteomic data, for example) have the potential to uncover uncharacterized protein-protein interactions and to identify the subset that are important for cellular response to specific biological stimuli. However, inferring mechanistically plausible protein signaling networks (PSNs) from phosphoproteomics data is a difficult task, owing in part to the lack of sufficiently comprehensive experimental measurements, the inherent limitations of network inference algorithms, and a lack of standards for assessing the accuracy of inferred PSNs. A case study in which 12 research groups inferred PSNs from a phosphoproteomics data set demonstrates an assessment of inferred PSNs on the basis of the accuracy of their predictions. The concurrent prediction of the same previously unreported signaling interactions by different participating teams suggests relevant validation experiments and establishes a framework for combining PSNs inferred by multiple research groups into a composite PSN. We conclude that crowdsourcing the construction of PSNs - that is, outsourcing the task to the interested community - may be an effective strategy for network inference. en
heal.publisher AMER ASSOC ADVANCEMENT SCIENCE en
heal.journalName Science Signaling en
dc.identifier.doi 10.1126/scisignal.2002212 en
dc.identifier.isi ISI:000294601900003 en
dc.identifier.volume 4 en
dc.identifier.issue 189 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής