dc.contributor.author |
Klonos, P |
en |
dc.contributor.author |
Panagopoulou, A |
en |
dc.contributor.author |
Kyritsis, A |
en |
dc.contributor.author |
Bokobza, L |
en |
dc.contributor.author |
Pissis, P |
en |
dc.date.accessioned |
2014-03-01T02:47:20Z |
|
dc.date.available |
2014-03-01T02:47:20Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0022-3093 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33083 |
|
dc.subject |
Dielectric spectroscopy |
en |
dc.subject |
Nanocomposites |
en |
dc.subject |
Poly(dimethylsiloxane) |
en |
dc.subject |
Segmental dynamics |
en |
dc.subject |
Titania |
en |
dc.subject.classification |
Materials Science, Ceramics |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.other |
Amorphous polymers |
en |
dc.subject.other |
Broad frequency range |
en |
dc.subject.other |
Crystal region |
en |
dc.subject.other |
Crystallinities |
en |
dc.subject.other |
Dielectric relaxation spectroscopy |
en |
dc.subject.other |
Dielectric studies |
en |
dc.subject.other |
Filler addition |
en |
dc.subject.other |
In-situ synthesized |
en |
dc.subject.other |
Interfacial interaction |
en |
dc.subject.other |
Interfacial layer |
en |
dc.subject.other |
Nanoparticle surface |
en |
dc.subject.other |
Polymer chains |
en |
dc.subject.other |
Polymer networks |
en |
dc.subject.other |
Segmental dynamics |
en |
dc.subject.other |
Segmental relaxation |
en |
dc.subject.other |
Sol-gel technique |
en |
dc.subject.other |
Temperature development |
en |
dc.subject.other |
Thermal protocol |
en |
dc.subject.other |
Thermal transitions |
en |
dc.subject.other |
Thermally stimulated depolarization currents |
en |
dc.subject.other |
TiO |
en |
dc.subject.other |
Titania |
en |
dc.subject.other |
Titania nanoparticles |
en |
dc.subject.other |
Well-dispersed |
en |
dc.subject.other |
Dielectric devices |
en |
dc.subject.other |
Dielectric spectroscopy |
en |
dc.subject.other |
Differential scanning calorimetry |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Fillers |
en |
dc.subject.other |
Glass |
en |
dc.subject.other |
Glass transition |
en |
dc.subject.other |
Nanocomposites |
en |
dc.subject.other |
Nanoparticles |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Titanium dioxide |
en |
dc.title |
Dielectric studies of segmental dynamics in poly(dimethylsiloxane)/titania nanocomposites |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.jnoncrysol.2010.06.058 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.058 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Differential scanning calorimetry, thermally stimulated depolarization currents and dielectric relaxation spectroscopy techniques, covering together a broad frequency range of 10(-4) to 10(6) Hz, were employed to investigate the effects of in situ synthesized titania nanoparticles on thermal transitions, segmental dynamics and interfacial interactions in poly(dimethylsiloxane)/titania nanocomposites. Titania particles (TiO2, 2040 nm in diameter) were prepared and well dispersed into the polymer network through sol-gel technique, aiming at stable and mechanically reinforced systems. The interactions between polymer and fillers were found to be strong, supressing crystallinity and affecting the temperature development of the glass transition. The segmental relaxation associated with the glass transition consists of three contributions, arising, in the order of decreasing mobility, from the bulk (unaffected) amorphous polymer fraction (alpha relaxation), from polymer chains restricted between condensed crystal regions (alpha(c) relaxation), and from the semi-bound polymer in an interfacial layer with strongly reduced mobility due to interactions with hydroxyls on the nanoparticle surface (alpha relaxation). The thickness of the interfacial layer was estimated to be in the range of 3-5 nm. Measurements using different thermal protocols proved very effective in analyzing the origin of each relaxation and the respective effects of filler addition. (C) 2010 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Non-Crystalline Solids |
en |
dc.identifier.doi |
10.1016/j.jnoncrysol.2010.06.058 |
en |
dc.identifier.isi |
ISI:000287640800067 |
en |
dc.identifier.volume |
357 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
610 |
en |
dc.identifier.epage |
614 |
en |