dc.contributor.author |
Toumpaniaris, P |
en |
dc.contributor.author |
Nikolakopoulos, I |
en |
dc.contributor.author |
Fotiadi, A |
en |
dc.contributor.author |
Stavroulakis, S |
en |
dc.contributor.author |
Filippatos, G |
en |
dc.contributor.author |
Kelekis, N |
en |
dc.contributor.author |
Koutsouris, D |
en |
dc.date.accessioned |
2014-03-01T02:47:23Z |
|
dc.date.available |
2014-03-01T02:47:23Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1746-8094 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33111 |
|
dc.subject |
Miniature rotating transducer |
en |
dc.subject |
Pulmonary artery catheter |
en |
dc.subject |
Right ventricular volume |
en |
dc.subject.other |
Cardiac ventricles |
en |
dc.subject.other |
Critically-ill patients |
en |
dc.subject.other |
Effective management |
en |
dc.subject.other |
Efficient treatment |
en |
dc.subject.other |
Error margins |
en |
dc.subject.other |
Medical practice |
en |
dc.subject.other |
Miniature rotating transducer |
en |
dc.subject.other |
Novel methods |
en |
dc.subject.other |
Pulmonary artery |
en |
dc.subject.other |
Right ventricular |
en |
dc.subject.other |
Right ventricular volume |
en |
dc.subject.other |
Rotating structures |
en |
dc.subject.other |
Software model |
en |
dc.subject.other |
Surgical operation |
en |
dc.subject.other |
Ultrasound transducers |
en |
dc.subject.other |
Ventricular walls |
en |
dc.subject.other |
Volume calculation |
en |
dc.subject.other |
Catheters |
en |
dc.subject.other |
Intensive care units |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Rotation |
en |
dc.subject.other |
Surgery |
en |
dc.subject.other |
Ultrasonic applications |
en |
dc.subject.other |
Ultrasonic transducers |
en |
dc.subject.other |
Volume measurement |
en |
dc.subject.other |
Transducers |
en |
dc.subject.other |
artery catheterization |
en |
dc.subject.other |
cardiopulmonary hemodynamics |
en |
dc.subject.other |
computer program |
en |
dc.subject.other |
conference paper |
en |
dc.subject.other |
heart right ventricle |
en |
dc.subject.other |
heart right ventricle pressure |
en |
dc.subject.other |
heart volume |
en |
dc.subject.other |
lung artery |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
nuclear magnetic resonance imaging |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
pulmonary artery catheter |
en |
dc.subject.other |
theoretical model |
en |
dc.subject.other |
transducer |
en |
dc.title |
Intracardiac volume calculation of right ventricular chamber - A theoretical method |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.bspc.2010.12.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.bspc.2010.12.003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this study a novel method of right ventricular (RV) volume measurement is presented, using a distance transducer inside the right ventricular cavity. This tool could be useful during pulmonary artery catheterization (PAC), as the transducer could be mounted on the tip of the catheter which will be inserted in the cavity. Pulmonary artery catheterization has been used for monitoring hemodynamics by measuring the intracardiac pressures in critically ill patients usually in intensive care unit but also in Infarctions Unit, even in the preparation or during serious surgical operations. However, pressure measurement cannot be sufficient enough for the effective management of critical patients. The pressure-volume ratio estimation is considered the most essential for the efficient treatment of critical patients. There is no other method to our knowledge which calculates the right ventricular volume using the pulmonary artery catheter, performing measurements for a long period of time as the catheter remains within the cardiac ventricle for several hours up to a few days. This method consisted by an ultrasound transducer which is mounted on a miniature rotating structure, measuring the distance from the transducer to several points on the ventricular wall. The collected data will be processed using the appropriate mathematical model in order the volume of the cavity to be calculated. Since the implementation of such a device is not feasible at this point, we attempted a software model of the proposed technique. Given that in medical practice there is a tolerance of up to 15% approximation in volume, the results could be considered satisfactory. The error margin could be further reduced as the rotation step increases. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Biomedical Signal Processing and Control |
en |
dc.identifier.doi |
10.1016/j.bspc.2010.12.003 |
en |
dc.identifier.isi |
ISI:000293480100015 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
330 |
en |
dc.identifier.epage |
335 |
en |