dc.contributor.author |
Economou, DP |
en |
dc.contributor.author |
Shubitidze, F |
en |
dc.contributor.author |
Barrowes, B |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.date.accessioned |
2014-03-01T02:47:25Z |
|
dc.date.available |
2014-03-01T02:47:25Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33132 |
|
dc.subject |
Eigenvalues |
en |
dc.subject |
Eigenvectors |
en |
dc.subject |
Electromagnetic Induction |
en |
dc.subject |
Magnetic Field |
en |
dc.subject |
Next Generation |
en |
dc.subject.other |
Data matrices |
en |
dc.subject.other |
Eigenvalues |
en |
dc.subject.other |
Electromagnetic induction sensors |
en |
dc.subject.other |
EMI Sensors |
en |
dc.subject.other |
IT project |
en |
dc.subject.other |
matrix |
en |
dc.subject.other |
Multi-static |
en |
dc.subject.other |
Multiple signal classification algorithm |
en |
dc.subject.other |
MUSIC algorithms |
en |
dc.subject.other |
Noise subspace |
en |
dc.subject.other |
Signal sub-space |
en |
dc.subject.other |
Source location |
en |
dc.subject.other |
Subsurface metallic targets |
en |
dc.subject.other |
UXO classification |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Electromagnetic induction |
en |
dc.subject.other |
Magnetic fields |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Wavelet analysis |
en |
dc.subject.other |
Computer music |
en |
dc.title |
MUSIC algorithm applied to Advanced EMI sensors data for UXO classification |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICEAA.2011.6046514 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICEAA.2011.6046514 |
en |
heal.identifier.secondary |
6046514 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method. © 2011 IEEE. |
en |
heal.journalName |
Proceedings - 2011 International Conference on Electromagnetics in Advanced Applications, ICEAA'11 |
en |
dc.identifier.doi |
10.1109/ICEAA.2011.6046514 |
en |
dc.identifier.spage |
1160 |
en |
dc.identifier.epage |
1163 |
en |