dc.contributor.author |
Argyriou, EN |
en |
dc.contributor.author |
Bekos, MA |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:47:30Z |
|
dc.date.available |
2014-03-01T02:47:30Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33178 |
|
dc.subject |
Graph Drawing |
en |
dc.subject.other |
Crossing angles |
en |
dc.subject.other |
Edge crossing |
en |
dc.subject.other |
Graph drawing |
en |
dc.subject.other |
Human understanding |
en |
dc.subject.other |
Negative impacts |
en |
dc.subject.other |
NP-hard |
en |
dc.subject.other |
Drawing (graphics) |
en |
dc.subject.other |
Computer science |
en |
dc.title |
The straight-line RAC drawing problem is NP-hard |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-18381-2_6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-18381-2_6 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Recent cognitive experiments have shown that the negative impact of an edge crossing on the human understanding of a graph drawing, tends to be eliminated in the case where the crossing angles are greater than 70 degrees. This motivated the study of RAC drawings, in which every pair of crossing edges intersects at right angle. In this work, we demonstrate a class of graphs with unique RAC combinatorial embedding and we employ members of this class in order to show that it is -hard to decide whether a graph admits a straight-line RAC drawing. © 2011 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-18381-2_6 |
en |
dc.identifier.volume |
6543 LNCS |
en |
dc.identifier.spage |
74 |
en |
dc.identifier.epage |
85 |
en |