HEAL DSpace

Thermal optimization for micro-architectures through selective block replication

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Diamantopoulos, D en
dc.contributor.author Siozios, K en
dc.contributor.author Xydis, S en
dc.contributor.author Soudris, D en
dc.date.accessioned 2014-03-01T02:47:30Z
dc.date.available 2014-03-01T02:47:30Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33179
dc.subject Architectural Design en
dc.subject Computer Architecture en
dc.subject Power Density en
dc.subject Temperature Control en
dc.subject Thermal Stress en
dc.subject system on a chip en
dc.subject.other 45nm technology en
dc.subject.other Aging phenomena en
dc.subject.other Architecture designs en
dc.subject.other Deep sub-micron technology en
dc.subject.other Hotspots en
dc.subject.other Micro architectures en
dc.subject.other On-chip temperature en
dc.subject.other Power densities en
dc.subject.other Resource replication en
dc.subject.other Silicon area en
dc.subject.other Temperature reduction en
dc.subject.other Thermal optimization en
dc.subject.other Computer simulation en
dc.subject.other Embedded systems en
dc.subject.other Computer architecture en
dc.title Thermal optimization for micro-architectures through selective block replication en
heal.type conferenceItem en
heal.identifier.primary 10.1109/SAMOS.2011.6045445 en
heal.identifier.secondary http://dx.doi.org/10.1109/SAMOS.2011.6045445 en
heal.identifier.secondary 6045445 en
heal.publicationDate 2011 en
heal.abstract Increased power densities result to higher on-chip temperatures, which in turn creates numerous problems tightly firmed to reliability issues. This problem is expected to become even more severe for deep-submicron technologies. In this paper, we propose a thermal-aware exploration framework at the microarchitecture level for temperature hotspots elimination through selective resource replication. Experimental results based on the LEON3 processor synthesized with a 45 nm technology library, shown that the proposed methodology leads to designs with fewer hotspots, while the maximal temperatures at these hotspots are also reduced. Specifically, temperature reduction of 17 Kelvin degrees is feasible, which leads to improvement against aging phenomena about 14%, with a controllable overhead in silicon area about 15%, as compared to conventional architecture design. © 2011 IEEE. en
heal.journalName Proceedings - 2011 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, IC-SAMOS 2011 en
dc.identifier.doi 10.1109/SAMOS.2011.6045445 en
dc.identifier.spage 59 en
dc.identifier.epage 66 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής