HEAL DSpace

Upward point-set embeddability

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Geyer, M en
dc.contributor.author Kaufmann, M en
dc.contributor.author McHedlidze, T en
dc.contributor.author Symvonis, A en
dc.date.accessioned 2014-03-01T02:47:31Z
dc.date.available 2014-03-01T02:47:31Z
dc.date.issued 2011 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33189
dc.subject.other NP Complete en
dc.subject.other Planar digraphs en
dc.subject.other Point set en
dc.subject.other Computer science en
dc.subject.other Geometry en
dc.title Upward point-set embeddability en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-18381-2_23 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-18381-2_23 en
heal.publicationDate 2011 en
heal.abstract We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph D has an upward planar embedding into a point set S. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of k-switch trees, that is a generalization of switch trees (according to this definition a switch tree is a 1-switch tree), we show that not every k-switch tree admits an upward planar straight-line embedding into any convex point set, for any k > 2. Finally we show that the problem of Upward Point-Set Embeddability is NP-complete. © 2011 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-18381-2_23 en
dc.identifier.volume 6543 LNCS en
dc.identifier.spage 272 en
dc.identifier.epage 283 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής