dc.contributor.author |
Geyer, M |
en |
dc.contributor.author |
Kaufmann, M |
en |
dc.contributor.author |
McHedlidze, T |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:47:31Z |
|
dc.date.available |
2014-03-01T02:47:31Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33189 |
|
dc.subject.other |
NP Complete |
en |
dc.subject.other |
Planar digraphs |
en |
dc.subject.other |
Point set |
en |
dc.subject.other |
Computer science |
en |
dc.subject.other |
Geometry |
en |
dc.title |
Upward point-set embeddability |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-18381-2_23 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-18381-2_23 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph D has an upward planar embedding into a point set S. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of k-switch trees, that is a generalization of switch trees (according to this definition a switch tree is a 1-switch tree), we show that not every k-switch tree admits an upward planar straight-line embedding into any convex point set, for any k > 2. Finally we show that the problem of Upward Point-Set Embeddability is NP-complete. © 2011 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-18381-2_23 |
en |
dc.identifier.volume |
6543 LNCS |
en |
dc.identifier.spage |
272 |
en |
dc.identifier.epage |
283 |
en |