dc.contributor.author |
Psyllos, A |
en |
dc.contributor.author |
Anagnostopoulos, CN |
en |
dc.contributor.author |
Kayafas, E |
en |
dc.date.accessioned |
2014-03-01T02:47:31Z |
|
dc.date.available |
2014-03-01T02:47:31Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0920-5489 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33191 |
|
dc.subject |
Image |
en |
dc.subject |
Measurement |
en |
dc.subject |
Recognition |
en |
dc.subject |
Vehicle |
en |
dc.subject.classification |
Computer Science, Hardware & Architecture |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.other |
Color recognition |
en |
dc.subject.other |
Fast processing time |
en |
dc.subject.other |
High-performance vehicles |
en |
dc.subject.other |
Image |
en |
dc.subject.other |
Image measurements |
en |
dc.subject.other |
License plate recognition |
en |
dc.subject.other |
Model recognition |
en |
dc.subject.other |
Phase congruency |
en |
dc.subject.other |
Probabilistic neural networks |
en |
dc.subject.other |
Real-time application |
en |
dc.subject.other |
Recognition |
en |
dc.subject.other |
Recognition rates |
en |
dc.subject.other |
Symmetry axis |
en |
dc.subject.other |
Vehicle manufacturers |
en |
dc.subject.other |
Vehicle model |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
License plates (automobile) |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Vehicles |
en |
dc.subject.other |
Optical character recognition |
en |
dc.title |
Vehicle model recognition from frontal view image measurements |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.csi.2010.06.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.csi.2010.06.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This paper deals with a novel vehicle manufacturer and model recognition scheme, which is enhanced by color recognition for more robust results. A probabilistic neural network is assessed as a classifier and it is demonstrated that relatively simple image processing measurements can be used to obtain high performance vehicle authentication. The proposed system is assisted by a previously developed license plate recognition, a symmetry axis detector and an image phase congruency calculation modules. The reported results indicate a high recognition rate and a fast processing time, making the system suitable for real-time applications. (C) 2010 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Standards and Interfaces |
en |
dc.identifier.doi |
10.1016/j.csi.2010.06.005 |
en |
dc.identifier.isi |
ISI:000285947000006 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
142 |
en |
dc.identifier.epage |
151 |
en |