dc.contributor.author |
Kollias, S |
en |
dc.contributor.author |
Halkias, C |
en |
dc.date.accessioned |
2014-03-01T02:47:33Z |
|
dc.date.available |
2014-03-01T02:47:33Z |
|
dc.date.issued |
1983 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33230 |
|
dc.subject |
Adaptive Estimation |
en |
dc.subject |
arma model |
en |
dc.subject |
Cubic Spline |
en |
dc.subject |
Model Reduction |
en |
dc.subject |
piecewise linear |
en |
dc.subject |
Reflection Coefficient |
en |
dc.subject |
State Space Representation |
en |
dc.subject |
kalman filter |
en |
dc.title |
A model reduction algorithm by spline approximation in the deconvolution of seismic signals |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICASSP.1983.1171954 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICASSP.1983.1171954 |
en |
heal.publicationDate |
1983 |
en |
heal.abstract |
This paper presents a new method for obtaining ap - proximate low-order recursive (ARMA) realizations of convolution models. It is based upon optimum piecewise linear or cubic spline approximation of the convolution kernel. The method may be efficiently used in the deconvolution of seismic signal. The basic seismic wavelet is approximated by splines and a fixed-lag smoothing state-space representation, equivalent |
en |
heal.journalName |
International Conference on Acoustics, Speech, and Signal Processing |
en |
dc.identifier.doi |
10.1109/ICASSP.1983.1171954 |
en |