dc.contributor.author |
Anagnostou, ME |
en |
dc.contributor.author |
Protonotarios, EN |
en |
dc.date.accessioned |
2014-03-01T02:47:34Z |
|
dc.date.available |
2014-03-01T02:47:34Z |
|
dc.date.issued |
1984 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33244 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0021566494&partnerID=40&md5=ae54ed9e17125b801c9de59c7049b340 |
en |
dc.subject.other |
CONTROL SYSTEMS, DELAY |
en |
dc.subject.other |
CONTROL SYSTEMS, DISCRETE TIME |
en |
dc.subject.other |
APPROXIMATE STOCHASTIC MODEL |
en |
dc.subject.other |
DELAY DISTRIBUTION |
en |
dc.subject.other |
DELAYED FEEDBACK |
en |
dc.subject.other |
DISCRETE TIME QUEUE |
en |
dc.subject.other |
MARKOV STATE MODEL |
en |
dc.subject.other |
QUEUE LENGTH DISTRIBUTION |
en |
dc.subject.other |
PROBABILITY |
en |
dc.title |
DISCRETE TIME QUEUE WITH n SERVERS AND DELAYED FEEDBACK. |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1984 |
en |
heal.abstract |
A GI/D/n discrete time queue with delayed feedback is analysed. An exact Markov state model, and, alternatively, an approximate stochastic model are used. The customer arrivals at the queue follow a general distribution for their interarrival times. Each customer may demand the repetition of his service with absolute priority after s time units. Expressions for the delay distribution and the queue length distribution are given. |
en |
heal.publisher |
Acad of Sciences of the USSR, Inst for Problems of Information Transmission, Moscow, USSR |
en |
heal.journalName |
[No source information available] |
en |
dc.identifier.spage |
24 |
en |
dc.identifier.epage |
25 |
en |