dc.contributor.author |
Contaxis, GC |
en |
dc.contributor.author |
Delkis, C |
en |
dc.contributor.author |
Korres, G |
en |
dc.date.accessioned |
2014-03-01T02:47:37Z |
|
dc.date.available |
2014-03-01T02:47:37Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33285 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0021973013&partnerID=40&md5=727e41c9ed16eda98bab87606ab757ad |
en |
dc.subject.other |
MATHEMATICAL PROGRAMMING, LINEAR |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Linearization |
en |
dc.subject.other |
ITERATIVE SCHEME |
en |
dc.subject.other |
OPTIMAL LOAD FLOW |
en |
dc.subject.other |
QUADRATIC PROGRAMMING |
en |
dc.subject.other |
ELECTRIC POWER SYSTEMS |
en |
dc.title |
DECOUPLED OPTIMAL LOAD FLOW USING LINEAR OR QUADRATIC PROGRAMMING. |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
The Optimal Load Flow problem is a constrained problem of large size and great complexity. For on-line implementation fast execution times and minimum computer storage are required. The proposed iterative scheme, reported in this paper, decomposes the Optimal Load Flow problem into real and reactive subproblems. At each iteration the two subproblems are solved using quadratic programming. If the valve point loading is to be considered, the two subproblems are solved using linear programming. In our scheme, linearization of the non-linear constraints of the problem is succeeded by utilizing Z-matrix techniques and sensitivity analysis. |
en |
heal.publisher |
IEEE, New York, NY, USA |
en |
heal.journalName |
[No source information available] |
en |