dc.contributor.author |
Afrati, F |
en |
dc.contributor.author |
Papaspirou, V |
en |
dc.date.accessioned |
2014-03-01T02:47:38Z |
|
dc.date.available |
2014-03-01T02:47:38Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33299 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0022188960&partnerID=40&md5=12d4918067e296b705f8bb94198dd2da |
en |
dc.subject.other |
CODES, SYMBOLIC |
en |
dc.subject.other |
BLOCK CODING |
en |
dc.subject.other |
HAMMING DISTANCE |
en |
dc.subject.other |
LINEAR CODING |
en |
dc.subject.other |
OPTIMAL EXTENSION |
en |
dc.subject.other |
SIGNAL PROCESSING |
en |
dc.title |
OPTIMAL EXTENSION OF A LINEAR CODE. |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
The authors attack the problem of optimally extending the dimension of a linear binary block code by increasing its length but retaining its minimum Hamming distance. After defining some decisive characteristics of a code affecting its extension capabilities and proving some preliminary results, the authors give a necessary and sufficient condition for a code to be optimally extended. This result can be readily used to decide the existence of a code from the existence of another shorter code of which the first can be an extension, and this can be also done in a recursive manner, ending up with the need to examine the properties of much shorter codes. |
en |
heal.publisher |
IEEE, New York, NY, USA |
en |
heal.journalName |
[No source information available] |
en |
dc.identifier.spage |
365 |
en |
dc.identifier.epage |
367 |
en |