dc.contributor.author |
Tzafestas, SG |
en |
dc.contributor.author |
Angelleli, A-M |
en |
dc.date.accessioned |
2014-03-01T02:47:45Z |
|
dc.date.available |
2014-03-01T02:47:45Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33314 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0022237512&partnerID=40&md5=896f533cb31c73b4b542b0ec48e1d4dd |
en |
dc.subject.other |
SIGNAL FILTERING AND PREDICTION |
en |
dc.subject.other |
AUTOREGRESSIVE MOVING-AVERAGE PROCESSES |
en |
dc.subject.other |
IMAGE RESTORATION |
en |
dc.subject.other |
MAXIMUM-LIKELIHOOD ESTIMATION |
en |
dc.subject.other |
IMAGE PROCESSING |
en |
dc.title |
THREE-DIMENSIONAL IMAGE RESTORATION USING ARMA MODELLING AND ML ESTIMATION. |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
Most recursive image enhancement-restoration techniques are based on the assumption that the autocovariance function of the original noise-free image is known or can be estimated beforehand. Recently, T. Katayama (1979) developed a technique that bypasses this assumption by using an ARMA model of the 2-D image field, combined with maximum-likelihood (ML) parameter estimation and appropriate filtering. Katayama's technique is here extended to 3-dimensional (volume) image fields, which are encountered in many practical situations. Some digital simulation results have been derived for artificial 3-dimensional fields, showing the feasibility of the method. |
en |
heal.publisher |
IEEE, New York, NY, USA |
en |
heal.journalName |
[No source information available] |
en |
dc.identifier.spage |
227 |
en |
dc.identifier.epage |
232 |
en |