dc.contributor.author |
Souflis, JL |
en |
dc.contributor.author |
Machias, AV |
en |
dc.contributor.author |
Dialynas, EN |
en |
dc.contributor.author |
Papadias, BC |
en |
dc.date.accessioned |
2014-03-01T02:47:46Z |
|
dc.date.available |
2014-03-01T02:47:46Z |
|
dc.date.issued |
1986 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33326 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0022957298&partnerID=40&md5=58a6ed2a18b79e94631fb5d9025f195a |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - State Space Methods |
en |
dc.subject.other |
PATTERN RECOGNITION |
en |
dc.subject.other |
SYSTEM STABILITY - Lyapunov Methods |
en |
dc.subject.other |
CRITICAL CLEARING TIMES |
en |
dc.subject.other |
TRANSIENT STABILITY |
en |
dc.subject.other |
ELECTRIC POWER SYSTEMS |
en |
dc.title |
COMPUTER-AIDED DESIGN OF POWER SYSTEMS BY A PATTERN RECOGNITION METHOD. |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1986 |
en |
heal.abstract |
A fast and accurate assessment is provided of critical clearing times in transient stability studies performed during the computer-aided design stage of electrical power systems. A computational algorithm is described that incorporates pattern recognition techniques and the second method of Lyapunov. An energy-type Lyapunov function is used that contains both kinetic and potential terms. The critical value of this function is computed in an algebraic manner by using a function to simulate the curve that identifies the stability domain in the state variables space. Using the algorithm developed, a typical system is analyzed, and the results are presented and discussed. |
en |
heal.publisher |
Comite EUROCON 86, Paris, Fr |
en |
heal.journalName |
[No source information available] |
en |
dc.identifier.spage |
615 |
en |
dc.identifier.epage |
619 |
en |