dc.contributor.author |
Kollias, S |
en |
dc.contributor.author |
Anastassiou, D |
en |
dc.date.accessioned |
2014-03-01T02:47:49Z |
|
dc.date.available |
2014-03-01T02:47:49Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33375 |
|
dc.subject |
Artificial Neural Network |
en |
dc.subject |
backpropagation |
en |
dc.subject |
Computational Complexity |
en |
dc.subject |
Convergence Rate |
en |
dc.subject |
Least Square Method |
en |
dc.subject |
Least Squares Estimate |
en |
dc.subject |
Local Minima |
en |
dc.subject |
Multilayer Neural Network |
en |
dc.subject |
Optimization Technique |
en |
dc.title |
Adaptive training of multilayer neural networks using a least squares estimation technique |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICNN.1988.23870 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICNN.1988.23870 |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
A technique is developed for the training of artificial neural networks, using a modification of the Marquardt-Levenberg optimization technique. An adaptive choice of the convergence rate factor μ, based on the contribution of each neuron in the minimization of the error function, is presented that can be very useful in handling the problem of local minima of the error function. |
en |
heal.journalName |
International Symposium on Neural Networks |
en |
dc.identifier.doi |
10.1109/ICNN.1988.23870 |
en |