2-d interpolation, matrix factorization and applications to signal processing

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Diamessis John, E en
dc.contributor.author Therrien Charles, W en
dc.date.accessioned 2014-03-01T02:47:50Z
dc.date.available 2014-03-01T02:47:50Z
dc.date.issued 1988 en
dc.identifier.issn 02714310 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/33381
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0024121764&partnerID=40&md5=664dc815b4e1fb4bc6bfe526649426fe en
dc.subject.other Mathematical Techniques--Matrix Algebra en
dc.subject.other Signal Processing--Analysis en
dc.subject.other 2-D Interpolation en
dc.subject.other FIR Filters en
dc.subject.other Interpolation Matrix en
dc.subject.other Matrix Factorization en
dc.subject.other Recursive Computability en
dc.subject.other Electric Filters, Digital en
dc.title 2-d interpolation, matrix factorization and applications to signal processing en
heal.type conferenceItem en
heal.publicationDate 1988 en
heal.abstract A method for solving a class of 2-D interpolation problems is presented. The method is not restricted to uniform interpolation points and has the attractive features of recursive computability and permanence of the solution. By combining two different approaches to the problem, the authors obtained the LU decomposition of the interpolation matrix without having to check the nonsingularity of submatrices. This decomposition gives the computational advantage of reducing the original problem to the solution of two triangular systems. The method can be used for the design of 1-D and 2-D FIR (finite-impulse response) filters. en
heal.publisher Publ by IEEE, Piscataway, NJ, United States en
heal.journalName Proceedings - IEEE International Symposium on Circuits and Systems en
dc.identifier.volume 3 en
dc.identifier.spage 2069 en
dc.identifier.epage 2071 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record