dc.contributor.author |
Giannakoglou, K |
en |
dc.contributor.author |
Chaviaropoulos, P |
en |
dc.contributor.author |
Papailiou, KD |
en |
dc.date.accessioned |
2014-03-01T02:47:50Z |
|
dc.date.available |
2014-03-01T02:47:50Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33382 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024176492&partnerID=40&md5=a6a9a4c1ebf16674313d16f0b37312ff |
en |
dc.subject.other |
Mathematical Techniques--Iterative Methods |
en |
dc.subject.other |
Turbomachinery--Fluid Dynamics |
en |
dc.subject.other |
Alternating Direction Implicit Method |
en |
dc.subject.other |
Generalized Minimal Residual (GMRES) Method |
en |
dc.subject.other |
Transonic Cascade Flows |
en |
dc.subject.other |
Two-Dimensional Cascade Flows |
en |
dc.subject.other |
Flow of Fluids |
en |
dc.title |
Acceleration of standard full-potential and elliptic Euler solvers, using preconditioned generalized minimal residual techniques |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
The Generalized Minimal Residual (GMRES) method has gained much attention lately and shows great promise for the solution of linear and non-linear problems. This paper sets up a preconditioning technique for further extending and accelerating the classical GMRES method. The preconditioners that are introduced are the Strongly Implicit Procedure and the Alternating Direction Implicit Method. Numerical results are presented for three-dimensional flows into ducts of rectangular or circular cross-section and for two-dimensional cascade flows and show substantial improvement over conventional algorithms. |
en |
heal.publisher |
Publ by American Soc of Mechanical Engineers (ASME), New York, NY, United States |
en |
heal.journalName |
American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED |
en |
dc.identifier.volume |
69 |
en |
dc.identifier.spage |
45 |
en |
dc.identifier.epage |
52 |
en |