dc.contributor.author |
Sukissian, Levon |
en |
dc.contributor.author |
Tirakis, Andreas |
en |
dc.contributor.author |
Kollias, Stefanos |
en |
dc.date.accessioned |
2014-03-01T02:47:54Z |
|
dc.date.available |
2014-03-01T02:47:54Z |
|
dc.date.issued |
1990 |
en |
dc.identifier.issn |
0277786X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33429 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-17944389833&partnerID=40&md5=93e97fb8f8f6a0ad88e50f50fae84f3d |
en |
dc.subject.other |
Computer Vision - Simulation |
en |
dc.subject.other |
Mathematical Techniques - Least Squares Approximations |
en |
dc.subject.other |
Neural Networks - Mathematical Models |
en |
dc.subject.other |
Robotics - Vision Systems |
en |
dc.subject.other |
Adaptive Classification |
en |
dc.subject.other |
Moments of Images |
en |
dc.subject.other |
Image Processing |
en |
dc.title |
Adaptive classification of textured images using moments and autoregressive models |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1990 |
en |
heal.abstract |
An adaptive approach to the classification of textured images is presented, based on the extraction of appropriate features from images. Autoregressive linear prediction models, as well as moments of images, are features which are examined and compared in the paper. Classification is achieved in an adaptive way, using an artificial feedforward neural network, which is trained by examples, using an efficient variant of the backpropagation learning algorithm. It is also shown that an adaptive least squares estimation algorithm can be appropriately interweaved with the network, resulting in an on-line adaptive classification scheme. Simulation results are given, which illustrate the performance of the presented method. |
en |
heal.publisher |
Publ by Int Soc for Optical Engineering, Bellingham, WA, United States |
en |
heal.journalName |
Proceedings of SPIE - The International Society for Optical Engineering |
en |
dc.identifier.volume |
1360 pt 3 |
en |
dc.identifier.spage |
1296 |
en |
dc.identifier.epage |
1306 |
en |