dc.contributor.author |
Tzafestas, S |
en |
dc.contributor.author |
Vagelatos, G |
en |
dc.contributor.author |
Capsiotis, G |
en |
dc.date.accessioned |
2014-03-01T02:47:55Z |
|
dc.date.available |
2014-03-01T02:47:55Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33444 |
|
dc.subject |
Computational Complexity |
en |
dc.subject |
Generic Model |
en |
dc.subject |
Multiple Input Multiple Output |
en |
dc.subject |
Predictive Control |
en |
dc.subject |
State Space |
en |
dc.subject |
System Modeling |
en |
dc.subject |
First Order |
en |
dc.subject |
Predictive Functional Control |
en |
dc.subject |
Second Order |
en |
dc.title |
A new generalized model-based predictive control algorithm |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CDC.1991.261473 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CDC.1991.261473 |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
A unified generalized model-based predictive control (GMBPC) technique is presented. This technique combines in an efficient way the key properties of several previous MBPC-like algorithms. The multiple-input-multiple-output (MIMO) state-space is employed, and state and control constraints are included in the system formulation. For better accuracy a second-order model is employed for each output variable, while a first-order model is always |
en |
heal.journalName |
Conference on Decision and Control |
en |
dc.identifier.doi |
10.1109/CDC.1991.261473 |
en |