dc.contributor.author |
Hadzidakis, M |
en |
dc.contributor.author |
Karagiannis, F |
en |
dc.contributor.author |
Chaviaropoulos, P |
en |
dc.contributor.author |
Papailiou, KD |
en |
dc.date.accessioned |
2014-03-01T02:48:05Z |
|
dc.date.available |
2014-03-01T02:48:05Z |
|
dc.date.issued |
1991 |
en |
dc.identifier.issn |
04021215 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/33517 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0025803266&partnerID=40&md5=0f43e1e2e9bd48eca3770aa6b5239207 |
en |
dc.subject.other |
Flow of Fluids - Ducts |
en |
dc.subject.other |
Mathematical Techniques - Finite Difference Method |
en |
dc.subject.other |
Helmholtz Decomposition |
en |
dc.subject.other |
Implicit Finite Difference Algorithm |
en |
dc.subject.other |
Two Dimensional Duct Flows |
en |
dc.subject.other |
Two Dimensional, Internal Aerodynamics |
en |
dc.subject.other |
Unsteady Euler Equations |
en |
dc.subject.other |
Aerodynamics |
en |
dc.title |
Unsteady Euler calculations in 2-D internal aerodynamics with introduced vorticity |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
1991 |
en |
heal.abstract |
This paper presents an implicit finite difference algorithm which solves the unsteady Euler equations in two-dimensional ducts. The unsteady nature of the flow is due to the time dependent inflow and outflow boundary conditions, while the geometry does not change in time. The present work in based on the Helmholtz decomposition of the unsteady velocity field into a potential and rotational part. Vorticity is introduced at the inlet by means of velocity, total enthalpy or even entropy slope. The presented results cover a wide range of reduced frequencies in the subsonic regime. |
en |
heal.publisher |
Publ by ASME, New York, NY, United States |
en |
heal.journalName |
American Society of Mechanical Engineers (Paper) |
en |